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Abstract

Vertebral malformations (VMs) pose a significant global health problem, causing chronic pain and disability. Verte-
bral defects occur as isolated conditions or within the spectrum of various congenital disorders, such as Klippel—

Feil syndrome, congenital scoliosis, spondylocostal dysostosis, sacral agenesis, and neural tube defects. Although
both genetic abnormalities and environmental factors can contribute to abnormal vertebral development, our
knowledge on molecular mechanisms of numerous VMs is still limited. Furthermore, there is a lack of resource

that consolidates the current knowledge in this field. In this pioneering review, we provide a comprehensive analysis
of the latest research on the molecular basis of VMs and the association of the VMs-related causative genes with bone
developmental signaling pathways. Our study identifies 118 genes linked to VMs, with 98 genes involved in biological
pathways crucial for the formation of the vertebral column. Overall, the review summarizes the current knowledge
on VM genetics, and provides new insights into potential involvement of biological pathways in VM pathogenesis.
We also present an overview of available data regarding the role of epigenetic and environmental factors in VMs. We
identify areas where knowledge is lacking, such as precise molecular mechanisms in which specific genes contribute

vertebrae, Hemivertebra, Neural tube defects

to the development of VMs. Finally, we propose future research avenues that could address knowledge gaps.
Keywords Vertebral defects, Klippel-Feil syndrome, Congenital scoliosis, Spondylocostal dysostosis, Butterfly

Background

The segmentally organized human vertebral column is
built of 31-33 vertebrae, comprising 7 cervical, 12 tho-
racic, 5 lumbar, 5 sacral, and 2-4 coccygeal vertebrae
fused into one bone (i.e. coccyx), housing neurons,
the spinal cord, and blood vessels. Development of the
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embryonic vertebral column is complex, and deep under-
standing of this process at a molecular level is critical
for grasping the origin of vertebral defects. The noto-
chord and somites are the most important structures
responsible for the vertebral column formation. Somites
develop from the paraxial mesoderm on either side of the
midline, and then differentiate into ventromedial scle-
rotome and dorsolateral dermomyotome. Sclerotome
cells migrate around the notochord and the neural tube,
subsequently segregating into two distinct regions: a
cranial domain comprising loosely arranged cells and a
caudal region characterized by densely packed cells. The
process ultimately leads to development of the vertebral
bodies, arches, and transverse and spinous processes.
The notochord plays a role in establishing the embryo’s
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longitudinal axis, determining the vertebral column ori-
entation, and guiding the formation of the nucleus pul-
posus of the intervertebral discs. On the other hand,
the dermomyotome gives rise to the dermis and skeletal
muscles [1-4] (Fig. 1). Chondrification and ossification
are the final steps in the formation of the vertebrae [5].
On the molecular level, vertebral column development
depends on the proper action of several signaling path-
ways, including Wnt, fibroblast growth factor (FGF),
Notch, Hedgehog (Hh), retinoic acid (RA), transforming
growth factor p (TGF-p), and bone morphogenic protein
(BMP) [6-8]. The primary function of the vertebral col-
umn is to provide structural support for the body.
Vertebral malformations (VMs) is an umbrella term
describing an etiologically heterogeneous group of con-
genital defects that may be caused by pathogenic vari-
ants in the somitogenesis genes, environmental factors,
or a combination of both [9-11]. The prevalence of
VMs is approximately 1-2 per 2000 live births, however,
their actual incidence may be higher due to missed or
delayed diagnosis [12, 13]. Depending on which process
of the vertebral development has failed, VMs have been
divided into segmentation, formation, mixed (both seg-
mentation and formation), or other defects [14]. In addi-
tion to vertebral defects, fused or missing ribs or their
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malalignment are often noted [15]. Vertebral defects may
be isolated or associated with other congenital anomalies,
including congenital kyphosis or scoliosis, VACTERL
association, or syndromes such as Klippel—Feil, spondy-
locostal dysostosis, spondylothoracic dystrophy, Alagille,
Gorlin, CHARGE, Jarcho-Levin, Goldenhar or Joubert
syndromes [10, 13, 16, 17]. Patients affected by VMs may
be either asymptomatic or present with significant dis-
abilities, resulting in body deformations, motor impair-
ment, respiratory distress or chronic pain which seriously
reduces their quality of life [10, 18]. Since there is no
cure for VMs, treatment focuses on symptoms managed
with either lifestyle or surgical interventions. Surgery is
indicated mainly in younger patients with thoracolum-
bar anomalies and particular VMs, ie., Klippel-Feil
syndrome and congenital scoliosis [19-21]. The surgical
intervention options encompass convex hemiepiphysi-
odesis, instrumented fusion, osteotomies, vertebrecto-
mies, and utilization of growth-promoting systems [22].
Herein, we present a comprehensive clinical descrip-
tion of rare congenital vertebral column defects, provide
an overview of the most relevant and recent findings
concerning the molecular and environmental etiology
of VMs, and discuss future research directions. In 2009
and 2013, Giampietro et al. released their two review
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Fig. 1 Schematic representation of vertebral development in human embryo. NT — neural tube. Created with Biorender.com
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articles in this field, and since then no other comprehen-
sive reviews of the current literature have been published
[11, 13]. Our paper attempts to fill the knowledge gap by
synthesizing and interpreting the latest literature to offer
new insights into the molecular background of VMs.

Classification of VMs

Vertebral anomalies result from formation, segmentation,
or simultaneous formation and segmentation defects
[14]. Formation failure is due to the absence of vertebral
elements occurring in the anterior, anterolateral, poste-
rior, posterolateral, or lateral region and may be complete
(hemivertebra, butterfly vertebra, vertebral aplasia) or
partial (wedge vertebra). On the other hand, segmenta-
tion failure (unilateral unsegmented bar, block vertebra)
arises from abnormal embryological segmentation of the
vertebral column (Fig. 2).

Hemivertebra (HV) is one of the most common ver-
tebral anomalies, with an estimated incidence from 1 to
10 per 10,000 live births, and it is mainly detected within
the thoracic (Th8) and lumbar spine [23-25]. HV occurs
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when half of the vertebral body fails to develop (unilat-
eral defect), and one pedicle is missing [14]. It has been
shown that HV is not a supernumerary vertebra but
rather an underdeveloped innate vertebra that originates
from asynchronous growth of the hemimetameric pair
[26]. Based on the growth pattern and positioning of the
HYV, the deformity is classified into four subtypes — fully
segmented, incarcerated, semi-segmented, and non-
segmented [27]. Importantly, HV represents a common
cause of congenital scoliosis [28]. Butterfly vertebra (BV),
also termed sagittal cleft vertebra, anterior rachischisis,
somatoschisis, or anterior spina bifida, is a rare verte-
bral malformation of unknown incidence. Due to a lack
of midline fusion of two lateral chondrification centers,
BV is characterized by two hemivertebrae separated by a
cartilaginous septum giving the butterfly appearance on
X-ray imaging [29, 30]. The defect occurs primarily in the
lumbar spine or less frequently in the thoracic region,
and may cause scoliosis or kyphosis [31]. Total aplasia of
the vertebral body was proposed to be the consequence
of chondrification center defect, and it usually leads to
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Fig. 2 Classification of vertebrae malformations based on the segmentation or formation failures. Segmentation defects encompass block
vertebra and unilateral unsegmented bar, whereas formation defects include wedge vertebra, hemivertebra, and butterfly vertebra. Hemivertebra
is classified into fully segmented, incarcerated, semisegmented, and nonsegmented. Segmentation defects were illustrated using the example

of the lumbar spine segment. Created with Biorender.com
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kyphosis. In addition, the presence of the butterfly mal-
formation is associated with various medical conditions,
such as Alagille syndrome, Crouzon syndrome, Jarcho-
Levin syndrome, and Pfeiffer syndrome [32-35]. Finally,
a wedge vertebra results from a unilateral asymmetry of
the vertebral body where two pedicles are present. The
anomaly is generally characterized by partial, unilateral
chondrification and ossification [14]. Recent findings
underscore the role of wedge-shaped vertebrae as a risk
factor in the pathogenesis of symptomatic upper lumbar
disc herniation [36].

Segmentation failure is usually observed in the cervical
and lumbar spine [37]. The most frequent segmentation
defect is the unilateral unsegmented bar resulting from a
malformation of two or more adjacent vertebrae, leading
to the fusion of over three vertebrae. The malformation
results in a bony block that involves the disc spaces and
facet joints, accompanied by rib fusions on the same side
as the bar. A characteristic feature of an unsegmented bar
is a lack of growth plates. However, the unaffected side of
the vertebral column continues to grow, leading to signif-
icant spinal deformities such as congenital scoliosis [21].
The unsegmented bars can occur together with hemiver-
tebrae, which carries a greater risk for the progression of
vertebral deformation than each of these defects alone.
Block vertebrae are formed due to somite segmentation
failure, culminating in partial or complete fusion of the
adjacent vertebrae. The morphological features of the
condition include a biconcave shape at the fusion site
and the presence of residual intervertebral disk material
(chorda remnants) in the proximity of the fusion area.
Predominantly only two vertebrae within the cervical,
thoracic, or lumbar regions of the spine are affected [14].
The most frequent location for the block vertebrae is
C2-C3, exhibiting a strong association with Klippel—Feil
syndrome [38, 39].

VM genetic etiology

The genetic etiology of VMs remains unexplored in the
majority of affected patients. Vertebral defects may
accompany the features of various, often rare, congeni-
tal syndromes. Based on the Human Phenotype Ontol-
ogy database, we have listed syndromes characterized
by vertebral defects, in which genetic background has
been revealed (Table 1). The KIAA1217 gene has not
been associated with any syndrome yet. However, very
recent investigations suggest its potential involvement
in VMs. Rare variants within this gene have been identi-
fied in 10 patients with vertebral fusions and other osse-
ous spine abnormalities [40]. In the following chapters
of this review, we describe vertebral defects specific to
particular segments of the spine currently intensively
investigated for their genetic background. Congenital
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osseous torticollis in the form of Klippel-Feil syndrome
was detailed as a cervical spine defect, congenital scolio-
sis, and spondylocostal dysostoses were depicted as tho-
racic/lumbar spine defects, developmental spinal stenosis
was listed as lumbar spine defect, whereas sacral agenesis
as a sacral spine defect. The comprehensive overview of
all the genes from our publication is presented in Table 2.
Our analysis shows the participation of VM genes in
multiple signaling pathways, particularly in Wnt (Wnt/p-
catenin, Wnt/PCP), ERK/MAPK, TGF-f, Notch, Hedge-
hog, BMP, and PI3K/Akt.

Cervical spine

Congenital osseous torticollis—Klippel-Feil syndrome
Klippel-Feil syndrome (KES) is a complex skeletal dis-
order characterized by the fusion of at least two cervi-
cal vertebrae, initially reported by Maurice Klippel and
Andre Feil [41]. Congenital vertebral fusions may occur
at any cervical spine level, although the most often
affected vertebrae are C2-C3 and C5-C6 [42]. Since the
first description of this syndrome, three morphologi-
cal subtypes of the disorder have been identified: type I,
characterized by the fusion of cervical and upper thoracic
vertebrae, type II, with only one or two pairs of fused
cervical vertebrae (Fig. 3), and type III, with the fusion
of cervical vertebrae combined with the fusion of lower
thoracic or lumbar vertebrae [43]. KES is reported in 1 of
40,000 to 42,000 newborns worldwide. However, the inci-
dence of this syndrome remains underreported due to a
lack of population screening studies and frequent asymp-
tomatic occurrence. Studies involving 2917 patients at
the emergency department and 131 patients with cervical
spondylotic myelopathy, who underwent spine imaging,
revealed the prevalence of KFS to be 0.58% and 3.82%,
respectively [42, 44]. A diagnosis of KFS is based on the
clinical triad, which includes a short neck, low-set pos-
terior hairline, and limited head and neck movements.
Notably, only 34—-74% of the affected individuals manifest
all three symptoms [45]. KES can be isolated or associ-
ated with numerous abnormalities, including scoliosis,
Sprengel deformity, spina bifida occulta, renal abnor-
malities, vision and hearing impairment, congenital heart
defects, and neurological anomalies [46—48].

There are four genetic forms of KFS with dominant
and recessive inheritance: KFS1, KFS2, KFS3, and KFS4
(Table 3). In KFS patients, many chromosomal abnormal-
ities have been reported, i.e., inv(8)(q22.2q22.3); t(5;17)
(q11.2;q23); inv(2)(p12q34) or t(5;8)(q35.1;p21.1) [49—
52]. Furthermore, according to Online Mendelian Inher-
itance in Man (OMIM), pathogenic variants in different
genes are associated with autosomal dominant KFS, i.e.,
GDF6 (MIM: 601147), GDF3 (MIM: 606522), and auto-
somal recessive KFS, i.e.,, MEOX1 (MIM: 600147), and
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Table 2 Characterization of gene variants associated with vertebral malformations. Bial-biallelic, Comp het-compound
heterozygous, Hemi-hemizygous, Het-heterozygous, Hom-homozygous, MF-multifactorial, ND-not determined; °genes associated
with several syndromes

Gene symbol Zygosity Inheritance Bone developmental signaling pathway References
KFS
(a) Mendelian genes
GDF3 Het Mendelian  Regulator of BMP and TGF signaling pathways [182,183]
GDF6 Het Mendelian  Regulator of BMP and TGFf signaling pathways [182, 184]
MEOX1 Hom, Comp het Mendelian  Induced by TGF [54,185]
MYO18B Hom, Comp het Mendelian  Involved in PI3K/AKT/mTOR and ERK/MAPK signaling pathways [57,186]
(b) Candidate genes
BAZIB Het ND Regulator of Wnt/ catenin signaling pathway [61,187]
CDANT ND ND Target of mTOR signaling pathway [62, 188]
CHRNG ND ND None [62]
COL6AT ND ND Involved in PI3K-Akt and ERK/MAPK signaling pathways [62,182]
COL6A2 ND ND Involved in PI3K-Akt and ERK/MAPK signaling pathways [62,182]
FLNB ND ND Involved in MAPK and SMAD signaling pathways [62,182]
FREMZ2 Het ND Involved in BMP and ERK/MAPK signaling pathways [61,189]
GLI3 ND ND Involved in Hedgehog and TGF{3 signaling pathways [62, 182}
KMT2D Het ND Regulator of Wnt/[3 catenin signaling pathway [61,182]
MYH3 ND ND A possible inhibitor of TGF signaling pathway [62 90]
PAXT ND ND Regulator of Hedgehog signaling pathway [62,182]
POR ND ND Regulator of Hedgehog signaling pathway [62,191]
RIPPLY2? Hom, Comp het ND Regulator of Notch signaling pathway [58,182]
SUFU Het ND Regulator of Hedgehog, Wnt/[ catenin and Notch signaling pathways [61,182]
TNXB ND ND Involved in PI3K-Akt signaling pathway [62,182]
VANGLT®  Het ND Involved in Wnt/PCP signaling pathway [61,182]
cs
(a) Risk genes
TBX6° Bial, Het MF Regulator of Notch signaling pathway [68, 182]
(b) Candidate genes
Human studies
FBN1T Het ND Involved in TGFP and ERK/MAPK signaling pathways [78,182]
PTK7 Het ND Involved in Wnt/PCP and ERK/MAPK signaling pathways [79,182]
SOX9 Het ND Regulator of Wnt/ catenin signaling pathway, involved in BMP and FGFR3 [80,182]
signaling pathways
TBXT? Het ND Target of Wnt/[3 catenin signaling pathway [76,182]
Genes within CNVs
DHX40 ND ND None [75]
DSCAM ND ND A possible regulator of ERK/MAPK signaling pathway [75,192]
MYSM1 ND ND Regulator of PI3K/AKT signaling pathway [75,193]
NBPF20 ND ND None [75]
NOTCH2 ~ ND ND Receptor of Notch signaling pathway, involved in NF-kB signaling pathway [75,182]
RASA2 ND ND Involved in G-protein, and Ras/MAPK signaling pathways [75,182]
SNTGT ND ND None [75]
Genes within DMRs
COL5A1 ND ND Involved in PI3K/AKT/mTOR and ERK/MAPK signaling pathways [145,182]
GRID1 ND ND None [145]
GSET ND ND None [145]
IGHGT ND ND Regulator of TGFB/SMAD3 signaling pathway [145,194]
IGHG3 ND ND None [145]
IGHM ND ND None [145]
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Table 2 (continued)

Gene symbol Zygosity Inheritance Bone developmental signaling pathway References
KAT6B ND ND A possibly regulator of Wnt/[ catenin signaling pathway [144]
RGS3 ND ND Regulator of G-protein signaling pathway, and have a function in Wnt signaling [145,182]

pathway
RNF213 ND ND Involved in non-canonical Wnt signaling pathway [145,182]
ROBO2 ND ND Regulator of ERK/MAPK signaling pathway [145,195]
SORCS2 ND ND Regulator of Wnt/PCP signaling pathway [145, 196]
TNS3 ND ND Regulator of membrane receptor signaling pathways [143]
Animal studies
Dstyk Het ND Regulator of mTORC1/TFEB signaling pathway [81]
SCD
(a) Mendelian genes
DLL3 Hom, Comp het Mendelian  Ligand of Notch signaling pathway, involved in Wnt and Hedgehog signaling [89, 182]
pathways
HES7 Het Mendelian  Target of Notch signaling pathway [182,197]
LFNG Hom, Comp het Mendelian  Target of Notch signaling pathway, involved in Wnt and Hedgehog signaling [91,182]
pathways
MESP2 Hom, Comp het Mendelian  Involved in Notch and FGF signaling pathways [182,198]
RIPPLY2? Het Mendelian  Regulator of Notch signaling pathway [90,182]
TBX6° Het Mendelian  Regulator of Notch signaling pathway [69, 182]
(b) Candidate genes
DMRT2 Hom ND Regulator of SOX9 [93,199]
DSS
Candidate genes
cox2 ND ND Regulator of TGF signaling pathway [99, 200]
DCC ND ND None [99]
LRP5 ND ND Receptor of Wnt/(3 catenin signaling pathway [99, 182]
VDR ND ND Involved in BMP and retinoic acid signaling pathways [99, 182]
ZNF704 ND ND None [99]
Currarino syndrome
(a) Mendelian genes
MNX1 Het Mendelian  Regulator of PI3K/AKT/mTOR and Wnt/{3 catenin signaling pathways [107, 201, 202]
(b) Candidate genes
ARID5A ND ND NF-kB signaling pathway activates ARID5A expression [106, 203]
CDH2 ND ND Involved in Wnt/[3 catenin signaling pathway [106, 182]
ETV3L ND ND Regulator of FGF signaling pathway [106, 204]
HOXB4 ND ND Regulator of Wnt/p catenin signaling pathway [106, 205]
ITIH2 ND ND None [106]
NCAPD3 ND ND Involved in NF-kB signaling pathway [106, 206]
TLE4 ND ND Regulator of canonical Wnt, Notch and TGFf3 signaling pathways [106, 182]
NTDs
Risk genes
cc2 Het, Hom MF Regulator of PI3K-AKT and ERK/MAPK signaling pathways [110,207]
FUZ Het MF Involved in Hedgehog signaling pathway [113,182]
VANGLT®  Het MF Involved in Wnt/PCP signaling pathway [112,182]
VANGL2 Het MF Involved in Wnt/ catenin signaling pathway [109, 182]
TBXT? Het MF Target of Wnt/3 catenin signaling pathway [111,182]
AMOT ND MF Involved in Hippo-Merlin signaling pathway [122,182]
ARHGAP36 ND MF Regulator of Hedgehog signaling pathway [122,208]
CELSR1 ND MF Involved in Wnt/PCK signaling pathway [124,209]
COL15AT  ND MF Involved in ERK signaling pathway [122,182]
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Table 2 (continued)

Gene symbol Zygosity Inheritance Bone developmental signaling pathway References
DACT1 ND MF Involved in Wnt signaling pathway [126, 182]
DISP2 ND MF Involved in Hedgehog signaling pathway [125,182]
DLCT ND MF Involved in MAPK signaling pathway [120,210]
DTX1 ND MF Regulator of Notch signaling pathway [122,182]
FREM2® ND MF Involved in BMP and ERK/MAPK signaling pathways [125,188]
FZD6 ND MF Receptor of Wnt/@ catenin signaling pathway [125,182]
GPR50 ND MF Regulator of Notch signaling pathway [122,211]
GRHL3 Het, Hom MF None [119]
ITGB1 ND MF Involved in PI3K/Akt signaling pathway [120,212]
MTHFR ND MF None [120]
MYOITE ND MF Involved in ERK signaling pathway [120, 182]
NKRF ND MF Regulator of NF-kB signaling pathway [122,182]
PAX3 Het MF Involved in Wnt, Hedgehog and Notch signaling pathways [123,182]
PRICKLET ~ ND MF Regulator of Wnt/f catenin signaling pathway [125,182]
PTK7? Het MF Involved in Wnt/PCP and ERK/MAPK signaling pathways [118,182]
RXRy ND MF Involved in retinoic acid signaling pathway [122,182]
SCRIB Het MF Involved in MAPK signaling pathway [121,124,182]
SHROOM3  ND MF None [123]
TKTL1 ND MF None [122]

CDS

Risk genes
CELSR1? Het MF Involved in Wnt/PCK signaling pathway [141,209]
VANGLT®  Het MF Involved in Wnt/PCP signaling pathway [112,182]

IDs

Genes within DMRs
CDKN1C Het Mendelian ~ None [150, 151]
H19 ND ND Involved in canonical Wnt signaling pathway [150, 151, 182]
IGF2 Het Mendelian  Involved in IGF2 signaling pathway [150, 151, 182]
KCNQ1OTT ND ND Regulator of BMP signaling pathway [151,182]

Other genes (Table 1)

Mendelian genes
ACVRI1 Het Mendelian  Regulator of BMP, TGF-f3, Akt and NF-kB signaling pathways [155,182]
AFF4 Het Mendelian A possible regulator of BMP signaling pathway [156,213]
ARSL Hom Mendelian ~ None [15 ]
COLT1IAT  Het Mendelian  Involved in ERK/MAPK and PI3K/AKT/mTOR signaling pathways [158,182]
COL2A1 Het Mendelian  Involved in PI3K/AKT/mTOR and ERK/MAPK signaling pathways [159,182]
DDRGK1 Hom, Comp het Mendelian  Regulator of NF-kB signaling pathway [160, 214]
EBP Het Mendelian ~ None [16 ]
FNT Het Mendelian  Involved in ERK/MAPK and PI3K/AKT/mTOR signaling pathways [162,182]
GDF11 Het Mendelian  Involved in TGF-{ signaling pathway [163,182]
GPC3 Hemi Mendelian  Regulator of Wnt, Hedgehog, FGF and BMP signaling pathways [164 215]
GPC4 Hemi Mendelian  Involved in Wnt/PCP signaling [165,182]
HSPG2 Hom, Comp het Mendelian  Involved in ERK signaling pathway [166, 182]
INPPL1 Hom, Comp het Mendelian  Regulator of PI3K-Akt and NF-kB signaling pathways [167,182]
JAGI Het Mendelian  Regulator of Notch signaling pathway [168,182]
KIAA0586 ~ Hom, Comp het Mendelian  Involved in Hedgehog signaling pathway [169,182]
LBR Hom, Het, Comp het Mendelian ~ None [170]
NADSYNT  Het Mendelian ~ None n71
NOTCH2®  Het Mendelian  Receptor of Notch signaling pathway, involved in NF-kB signaling pathway [172,182]
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Table 2 (continued)

Gene symbol Zygosity Inheritance Bone developmental signaling pathway References
NSDHL Het Mendelian  Regulator of TGF-$ and Hedgehog signaling pathways [173,216]
PDE4D Het Mendelian  Involved in cAMP signaling pathway [174,182]
POGZ Het Mendelian A possible regulator of Wnt signaling pathway [175,217]
SLC26A2 Hom, Comp het Mendelian  Regulator of FGFR3 signaling pathway in mouse models [176,218]
SLC29A3 Hom, Comp het Mendelian  Regulator of insulin signaling pathway [177,219]
SLC35D1 Hom, Comp het Mendelian  Candidate gene for Notch signaling pathway [178,220]
SOX9° Het, Hom Mendelian  Regulator of Wnt/f catenin signaling pathway, involved in BMP and FGFR3 [182,224]

signaling pathways
SUMF1 Hom, Comp het Mendelian  Regulator of FGF signaling pathway [179,221]
TNFRSF11A  Het Mendelian  Involved in PI3K-Akt and NF-kappaB signaling pathways [180, 182]
TRPV4 Het Mendelian  Regulator of TGF-( signaling pathway [181,222]
(b) Candidate genes
KIAA1217  Het Mendelian  Regulator of Notch and Wnt/f-catenin signaling pathways [40, 223]

Fig. 3 Anteroposterior (A) and lateral (B) cervical spine radiographs showing vertebrae fusion at C6-C7 in a patient with Klippel-Feil syndrome

Table 3 Genetic classification of Klippel-Feil syndrome. MIM—Mendelian Inheritance in Men

Genetic form of Klippel-Feil  Inheritance Gene Overlap with morphological types of References
syndrome (KFS) Klippel-Feil syndrome

KFS1 Autosomal dominant GDF6 (MIM: 601147) Types |, I, and Il [184]

KFS2 Autosomal recessive MEOXT (MIM: 600147) Types |, II, and Il [54]

KFS3 Autosomal dominant GDF3 (MIM: 606522) Type ll [183]

KFS4 Autosomal recessive MYO18B (MIM: 607295) None [57]

MYOI8B (MIM: 607295). The GDF3 and GDF6 genes
are members of the TGF-3/BMP family, and their protein
products are essential for forming and developing bones

and joints. The MEOXI gene encodes a homeobox pro-
tein MOX-1, a transcription factor expressed in somites.
MOX-1 regulates separation of vertebrae from one
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another during early development. Despite the clinical
heterogeneity of KFS, the patients harboring pathogenic
variants in the MEOXI gene display multiple common
features, i.e., Sprengel’s deformity, congenital scoliosis,
and an ectopic omovertebral bone [53, 54]. The MYO18B
gene encodes an unconventional class XVIII myosin,
mainly expressed in human cardiac and skeletal muscle.
The protein plays a potential role in cellular processes
and transcriptional regulation of muscle-specific genes
[55]. A null variant in MYOI8B was linked to a novel
developmental disorder that combines KFS and myopa-
thy. Noteworthy, only a small subset of KES cases could
be explained by pathogenic variants in one of the four
mentioned genes [56].

Multiple genes have been proposed as potential can-
didates responsible for KFS. A homozygous frameshift
variant in RIPPLY2 was identified in a patient suffering
from KFS with heterotaxy. Studies indicated that vari-
ants in RIPPLY2 could be responsible for a new type of
KES. However, further research is required to verify this
possible link [57, 58]. Mouse models also identified some
variants in the PAX gene family and the Notch signal-
ing pathway as potential genetic cause of the described
disorder [59]. Abnormalities in PAXI have been identi-
fied in 8 out of 63 patients with KFS [60]. Furthermore,
researchers found out that among five new candidate
genes (BAZIB, FREM2, VANGLI1, SUFU, and KMT2D),
the variants in BAZI1B had the strongest association with
KES [61]. On the other hand, a study by Li et al. revealed
11 pathogenic missense variants in eight KFS patients,
including COL6AI1, COL6A2, CDANI1, CHRNG, FLNB,
GLI3, MYH3, POR, and TNXB, but none within KFS-
related genes — GDF6, GDF3, MEOX1, and MYOI18B
[62].

Thoracic/lumbar spine

Congenital scoliosis

Congenital scoliosis (CS) is a spinal deformity resulting
from the abnormal shape of vertebrae (hemivertebrae,
butterfly vertebrae, wedge vertebrae), segmentation fail-
ure, or a combination of both [63, 64]. Hemivertebrae are
the most common cause of CS. Many CS patients also
have defects in other organs, particularly in the heart
and the genitourinary system [65]. This condition is esti-
mated to occur in 1 per 2000 live births and manifests
as a lateral curvature of the spine (Cobb angle) exceed-
ing 10 degrees. The indication for CS surgery depends on
the degree of CS at the time of diagnosis and the disease
progression.

The genetic basis of CS is only partially explained.
Approximately 10% of the patients harbor heterozy-
gous TBX6 loss-of-function variants or a deletion copy-
number variant (CNV) within chromosome 16p11.2,
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including the TBX6 gene [66—68]. Wu et al. reported that
CS patients with TBX6 loss-of-function variants carry
an additional hypomorphic variant on the second TBX6
allele, which is a specific haplotype corresponding to one
of the following common SNVs: rs2289292, rs3809624,
and rs3809627 [68]. In two subsequent studies, research-
ers found these variations in TBX6 in about 9.6% and
7.14% of CS patients, respectively [69, 70]. TBX6 belongs
to the T-box family and encodes a transcription fac-
tor controlling presomitic mesoderm segmentation and
differentiation during development [71, 72]. In 2019,
Liu et al. defined TBX6-associated congenital scoliosis
(TACS) as a unique clinically recognizable subtype of CS
[73, 74].

In addition to 16p11.2 deletion, involving the TBX6
gene, a recent study revealed novel CNVs carried by
CS individuals [75]. Lai et al. identified recurrent CNVs
encompassing three scoliosis-related genes, including
NOTCH2, DSCAM, and SNTG1 and four genes (DHX40,
NBPF20, RASA2, and MYSM1I) possibly linked to skeletal
abnormalities [75].

New CS candidate genes have also been proposed, i.e.,
TBXT, FBNI1, PTK7, SOX9, and Dstyk [76-81]. Simi-
larly to TBX6, TBXT (also known as Brachyury or T), a
member of the T-box family, is highly expressed in the
notochord and is involved in mesoderm formation and
axial elongation [82]. According to some studies, FBNI
may trigger CS by upregulating TGF-p signaling, which
is essential for skeletal development [78, 83]. The third
candidate gene, PTK7, plays a crucial role in canonical
and non-canonical Wnt signaling, whereas the fourth CS
candidate gene, SOX9, is involved in chondrocyte differ-
entiation, notochord maintenance, and demarcation of
intervertebral disc compartments [84—86]. Finally, vari-
ants of Dstyk may result in CS-like VMs in zebrafish due
to disrupting the formation of the notochord vacuole
through the mTORC1/TFEB pathway [81].

Spondylocostal dysostosis

Another congenital spinal disorder, spondylocostal dys-
ostosis (SCD), shares a similar phenotype with CS. SCD
is a rare genetic defect characterized by malformations of
the ribs and vertebrae (hemivertebrae, butterfly vertebrae,
fusion, block, or mixed abnormalities). SCD patients
often present with a short neck, short trunk, and scoliosis
[17, 87]. To date, SCD has been classified into seven sub-
types based on their phenotypes and disease genes: SCD1
with pathogenic variants in DLL3, SCD2 with pathogenic
variants in MESP2, SCD3 with pathogenic variants in
LFNG, SCD4 with pathogenic variants in HES7, SCD5
with pathogenic variants in T7BX6, SCD6 with patho-
genic variants in RIPPLY2, and SCD7 with pathogenic
variants in DLLI. All these disorders are inherited in an
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autosomal recessive manner. However, SCD5, in addition
to autosomal recessive transmission may also present
autosomal dominant inheritance pattern [68, 88-92]. It
has been shown that SCD may co-occur with additional
cervical and sacral spine malformations or costovertebral
malformations. In such phenotypes, pathogenic variants
are identified in LENG or DRMT?2, respectively [91, 93,
94]. The results of a functional analysis of the missense
LFNG variant (p.Phel88Leu) showed no difference in
protein expression between the mutant and wild-type
mice [91]. In contrast, the Dmrt2 knock-out mice dis-
played a similar phenotype to a human neonate with
SCD, indicating that pathogenic variants in DMRT2 may
be related to a new subtype of SCD [93].

Lumbar spine

Developmental spinal stenosis

Developmental spinal stenosis (DSS), also known as con-
genital lumbar spinal stenosis, is likely caused by fetal and
postnatal abnormal development of the posterior spinal
elements [95, 96]. The most common clinical features of
DSS include a narrow spinal canal, enlarged lamina, and
short pedicles [97]. In some cases, the lumbar vertebrae
give the spinal canal a trefoil appearance that leads to
lumbar and sacral nerve compression [98]. Genetic pre-
disposition to DSS differs between the upper (L1-L4) and
the lower (L5-S1) lumbar spine levels. Genome-Wide
Association Study showed that L4 and L5 vertebrae DSS-
associated SN'Vs were located within the ZNF704, and
DCC genes, respectively. In addition, three candidate
genes, i.e.,, LRP5, COX2, and VDR can contribute to DSS
[99]. DSS is often associated with achondroplasia, a type
of skeletal dysplasia resulting from specific FGFR3 acti-
vating alterations. Such a complication leads to neuro-
logic symptoms in affected individuals and thus requires
surgical interventions [100-102]. Sporadically, congenital
thoracolumbar stenosis is also noted in alkaptonuria, as
described recently [103].

Sacral spine

Sacral agenesis

Sacral agenesis is a congenital absence of the entire
sacrum. The classic form of sacral agenesis is autosomal
dominant Currarino syndrome (MIM: 176450), in which
partial agenesis, i.e., hemisacrum, within S2-S5 verte-
brae occurs. In addition, patients present with anorectal
malformations, a presacral mass (anterior meningocele,
enteric cyst, or presacral teratoma), and urogenital
anomalies [104]. Over twenty years ago, a causative gene
for this syndrome was found, i.e., MNX1I, also known as
HLXB9 [105]. Recently, whole exome sequencing stud-
ies of 6 patients with Currarino syndrome revealed 7
variants that might be linked to the disorder, ie., a de
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novo variant in ETV3L (p.Vall26lle), a de novo variant
in NCAPD3, a variant in ARIDSA (p.Arg55Leu), a mis-
sense variant in CDH2 (p.Argl51Ser), a variant in [TIH2
(p.lle541Ilefs12), a variant in HOXB4 (p.Lys16Asn), and
variant in TLE4 (p.Ser650Leu) [106, 107].

The role of environmental factors and epigenetics
in congenital spinal deformities

The role of environmental factors

Neural tube defects

Neural tube defects (NTDs) represent a group of con-
genital anomalies characterized by incomplete neural
tube closure during embryonic development. The defects
result from a complex interplay of genetic and environ-
mental factors. NTDs encompass a heterogeneous spec-
trum of congenital anomalies, including anencephaly,
spina bifida (SB), encephalocele, and craniorachischi-
sis [108]. Genetic factors play a key role in the etiology
of NTDs, with intragenic susceptibility variants identi-
fied in multiple genes, including CCL2 (MIM: 158105),
FUZ (MIM: 610622), VANGL1 (MIM: 610132), VANGL2
(MIM: 600533), and TBXT (MIM: 601397) [109—113].
The pathogenic variant in the CCL2 gene predisposes
to the development of SB. Notably, the CCL2 gene regu-
lates the export level of monocyte chemotactic protein-1
following treatment with interleukin-1-f in vitro [114].
Research has shown that maternal hyperthermia in the
first trimester of pregnancy is associated with a twofold
increase in the incidence of SB [115]. Hence, inflam-
mation and increased body temperature, mediated by
chemokines, may be contributing factors in the patho-
genesis of SB. Jensen et al. linked the CCL2A(-2518)
G promoter polymorphism with SB, as the allele could
attenuate the response to infection [110]. Another pre-
disposing gene in NTDs, expressed in the emerging neu-
ral tube, is the FUZ gene. Seo et al. found 5 missense
heterozygous pathogenic substitutions in FUZ in an Ital-
ian cohort, i.e., p.Pro39Ser, p.Asp354Tyr, p.Arg404Glu,
p.Gly140Glu, and p.Ser142Thr. The variants disrupt pri-
mary cilia formation and affect directional cell move-
ment, which are crucial processes in developing the
spinal neural tube [113]. Furthermore, several heterozy-
gous missense pathogenic variants within the VANGLI
and VANGL?2 genes have been associated with a sub-
set of human NTDs. Merello et al. suggested a correla-
tion between three heterozygous missense variants of
VANGLI, p.Alal87Val, p.Asp389His, and p.Arg517His,
and the occurrence of NTDs [116]. Interestingly, another
research group has indicated a predisposition of patho-
genic variants in VANGL2 (p.Ser84Phe, p.Arg353Cys,
and p.Phe437Ser) to an increased risk of cranial NTDs
in human fetuses [109]. Finally, researchers have identi-
fied a pathogenic variant in the TBXT gene, TIVS7-2,
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in individuals suffering from meningomyelocele. The
variant has been concomitantly correlated with elevated
predisposition to SB [117]. Numerous studies have also
identified other risk-candidate genes such as AMOT,
ARHGAP36, CELSRI1, COL15A1, DACTI1, DISP2, DLCI,
DTX1, FREM2, FZD6, GPR50, GRHL3, ITGBI1, MTHFR,
MYOIE, NKRF, PAX3, PRICKLEI1, PTK7, RXRy, SCRIB,
SHROOM3, and TKTLI1 [118-126]. Despite identify-
ing susceptibility variants responsible for NTDs, recent
studies have revealed a significant role of environmen-
tal factors in the etiology of NTDs. A prospective study
has demonstrated that fever during the first month of
pregnancy increases the risk of NTDs [115]. Further-
more, a systematic review and meta-analysis conducted
in 2005 confirmed that hyperthermia in early pregnancy
is a risk factor for NTDs [127]. Other significant factors
contributing to the development of NTDs are maternal
diabetes and obesity. Specifically, teratogenic implica-
tions of hyperglycemia and hyperinsulinemia increase
cellular apoptosis within the developing embryonic
neural plate. Women diagnosed with diabetes manifest
a notable 2- to tenfold escalation in the risk of NTDs,
whereas women affected by obesity demonstrate a 1.5-
to 3.5-fold increase, with the severity of risk correlating
with maternal body mass index [128—130]. Thirdly, inad-
equate maternal nutritional status during pregnancy,
i.e., deficiencies in folate, zinc, and B12, is a factor in
the increased risk of NTDs. Notably, research strongly
supports the association between folate deficiency and
NTDs [131, 132]. The recommended folic acid dosage for
women with a previous NTD-complicated pregnancy is
4 mg/day [133]. Among antiepileptic drugs, valproic acid
is the most widely recognized teratogenic drug associ-
ated with NTDs. The risk of NTDs related to valproate
exposure appears to be dose-dependent, necessitating
cautionary measures to avoid its use or to limit the dos-
age [134]. Finally, alcohol and caffeine consumption and
maternal exposure to passive smoking are potential risk
factors, however, more studies are needed [135-137].

Caudal dysgenesis syndrome Caudal dysgenesis syn-
drome (CDS; MIM: 600145), also classified as neural
tube defect, is a form of sacral agenesis, in which various
heterogeneous constellations of symptoms are observed.
The CDS phenotype encompasses defects of caudal
derivatives, such as anomalies affecting the caudal spine,
the spinal cord, the hindgut, the urogenital system, and
sporadically the lower extremities (sirenomelia) [138,
139]. Amongst CDS causes, one may list maternal insu-
lin-dependent diabetes during pregnancy (detected in
15-25% of mothers who gave birth to affected children)
and pathogenic variants within the VANGLI or CELSRI
genes [112, 140, 141]. Furthermore, the influence of

Page 13 of 21

exogenous substances on the fetus, including retinoic
acid and insulin, is also a potential risk factor [142].

The role of epigenetics

Epigenetic factors represent another potential mecha-
nism that may be involved in the pathogenesis of VMs.
The epigenetic genes involved in the etiology of verte-
bral defects are summarized in Table 4. Recent stud-
ies showed that aberrant DNA methylation might be
linked with the pathogenesis of CS. As compared with
healthy individuals, CS patients showed hypermethyla-
tion in KAT6B, TNS3, IGHGI1, IGHM, IGHG3, RNF213,
and GSEI, and hypomethylation in SORCS2, COL5A1,
GRID1, RGS3, and ROBO2 [143-145]. Moreover, DNA
methylation is a critical mechanism in the process of
genomic imprinting, an epigenetic mode of inherit-
ance in which genes are expressed exclusively from one
parental chromosome, depending on their parental ori-
gin. These epigenetic modifications during gametogen-
esis have been implicated in the etiology of several
congenital imprinting disorders (IDs), which present
with different clinical features. Silver—Russell syndrome
(SRS) and Beckwith—-Wiedemann syndrome (BWS)
represent examples of imprinting disorders associated
with VMs [146]. SRS is characterized by growth retar-
dation, macrocephaly at birth, and dysmorphic facial
features (triangular face, prominent forehead). Symp-
toms associated with VMs include scoliosis, kyphosis,
kypho-lordosis, lumbar hypomobility, lumbar hypolor-
dosis with lumbar hypomobility, and abnormally high
lumbar vertebrae [147-149]. Hypomethylation at the
imprinting control region 1 (ICR1) located on chro-
mosome 11p15.5, resulting from the loss of paternal
methylation, constitutes a primary cause of SRS. This
epigenetic aberration affects the expression of growth-
regulatory genes, i.e., IGF2 and HI9. Furthermore,
patients with SRS carry maternal uniparental disomy
of chromosomes 7, 14, 16, and 20, aberrant methyla-
tion of 14q32.2, maternal gain-of-function variants in
CDKNIC, and paternal loss-of-function variants in
IGF2 [150]. BWS manifests clinical features, including
macrosomia, macroglossia, abdominal wall defects, and
elevated risk for embryonal tumors [151]. Additionally,
a recent study identified painful scoliosis with lateral-
ized overgrowth as one of the consequences of BWS
[152]. Analogously to SRS, most BWS cases exhibit
DNA methylation alterations at the chromosomal locus
11p15.5-11p15.4. In contrast to SRS, BWS is typified
by hypermethylation at the ICR1 and hypomethyla-
tion at the ICR2, which result in dysregulation of three
imprinted genes shared with SRS, namely IGF2, H19,
and CDKNIC, and the KCNQ1OT gene [151].
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Table 4 Description of epigenetic genes associated with vertebral malformations pathogenesis. BWS-Beckwith-Wiedemann
syndrome, CS—Congenital scoliosis, ICRT-Imprinting control region 1, ICR2-Imprinting control region 2

Gene Epigenetic change Conditions  Country of the study Year of References
the study
CDKN1C Hypomethylation of the ICR2 in the imprinted region 11p15.5  BWS The United States of America 2003 [225]
COL5AT Gene hypomethylation CS China 2021 (145]
GRID1 Gene hypomethylation cs China 2021 [145]
GSE1 Gene hypermethylation (@) China 2021 [145]
HI19 Hypermethylation of the ICR1 in the imprinted region 11p15.5  BWS United Kingdom 1997 [226]
1GF2 Hypomethylation of the ICR1 in the imprinted region 11p15.5 SRS Switzerland 2009 [227]
IGHG1 Gene hypermethylation cs China 2021 [145]
IGHG3 Gene hypermethylation cs China 2021 [145]
IGHM Gene hypermethylation cs China 2021 [145]
KAT6B Gene hypermethylation cs China 2020 [144]
KCNQIOT ~ Hypomethylation of the ICR2 in the imprinted region 11p15.5 ~ BWS The Netherlands 2001 [228]
RGS3 Gene hypomethylation cs China 2021 [145]
RNF213 Gene hypermethylation (@) China 2021 [145]
ROBO2 Gene hypomethylation cs China 2021 [145]
SORC2 Gene hypomethylation cs China 2021 [145]
TNS3 Gene hypermethylation CS China 2022 [143]

Future perspectives and conclusions

Studies regarding the genetic background of VMs are
ongoing worldwide. However, their main limitations
remain the rare occurrence of VMs, clinical heteroge-
neity of these defects, and the economic barrier that
all impede performing large cohort research screening
using advanced technologies, including whole-genome
sequencing, transcriptome profiling via RNA-seq, third-
generation sequencing, single-cell sequencing, and other
more sophisticated functional studies.

Given the phenotypic heterogeneity of VMs, the appli-
cation of exact classification systems appears critical for
clinical recognition and, next, molecular background
research. Studies of clinically homogenous groups of
VMs patients are highly needed for identifying the causa-
tive genetic lesions underlying vertebral defects and
closing the knowledge gap in this area. Simultaneously,
exploring the potential contribution of epigenetic factors
to the development of vertebral disorders is an interest-
ing avenue for future research. While studies into the
epigenetics of CS and IDs have yielded promising results
in recent years, there is a knowledge gap in the potential
role of epigenetics in other described syndromes. Recent
studies on rare diseases such as chromatinopathies and
Kabuki syndrome have underscored the crucial role of
genome-wide DNA methylation analysis in establishing
definitive molecular diagnoses, particularly in the cases
where initial genetic screenings yield negative results.
Simultaneously, integrating genotype, phenotype, and
epigenetic factors has been proposed as a promising

approach to unraveling the molecular basis of rare dis-
eases [153, 154]. So far, only one promising study has
explored the global genome-wide methylation profile in
CS patients, albeit with a small sample size of n=4 [145].
To expand the scope of methylation investigations in CS
and initiate studies in other described VMs disorders,
novel methods such as comprehensive whole-genome
bisulfite sequencing and methylome arrays covering
approximately 850,000 loci could be used. We assume
that integrative analyses incorporating multi-omics data,
encompassing (epi-)genomic, transcriptomic, and chro-
matin studies, hold significant promise in providing a
comprehensive molecular picture of VMs. Furthermore,
to our knowledge, there are no cis-regulatory variants
in the non-coding DNA described so far in the medical
literature that are causative for VMs. Thus, pathogenic
variants located in the regulatory elements of the genes
involved in embryonic vertebral development represent
another putative disease mechanism. Such causative
changes can be identified via array comparative genomic
hybridization and whole-genome sequencing analyses.
Importantly, the complexity of VMs etiology can-
not be excluded. The involvement of external environ-
mental causes such as maternal drug intake, maternal
diseases during pregnancy, or other yet unidentified
environmental factors affecting the developing fetus or
possibly parents before pregnancy, should also be con-
sidered. In VMs disorders influenced by environmental
factors, the range of structural abnormalities can differ
significantly based on the timing of exposure to these
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factors during embryonic development and the inten-
sity of their impact. As a result, the affected individu-
als may display a variety of anomalies, with differences
in the type and severity of malformations. Conversely,
genetic disorders show a more consistent pattern of
inheritance and recurrence within families.

In conclusion, the described heterogeneity of VMs
highlights the need for interdisciplinary research
approaches that integrate genetics, environmental fac-
tors, and epigenetic mechanisms.
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