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Abstract 

Background  GTPBP3 catalyzes τm5(s2) U biosynthesis at the 34th wobble position of mitochondrial tRNAs, 
the hypomodification of τm5U leads to mitochondrial disease. While twenty-three variants of GTPBP3 have been 
reported worldwide, the genetic landscape in China remains uncertain.

Methods  By using whole-exome sequencing, the candidate individuals carrying GTPBP3 variants were screened 
and identified. Pathogenicity analysis of variants was biochemically verified by patients-derived immortalized lympho-
cytes and cell models.

Results  Through whole-exome sequencing, thirteen variants associated with GTPBP3 were identified in nine Chinese 
pedigrees, with eight of these variants being newly reported. Affected individuals displayed classic neurologic pheno-
types and heart complications including developmental delay, seizures, hypotonia, exercise intolerance, and hyper-
trophic cardiomyopathy. Additionally, they displayed new symptoms such as eye problems like strabismus and heart 
issues related to valve function. Studies conducted on patient-derived cells provided evidence of reduced levels 
of GTPBP3 and impairment in mitochondrial energetic biogenesis. Re-expressing GTPBP3 variants in knockout cell 
lines further defined the pathogenicity of the novel variants. Analysis of the genetic spectrum in the Chinese popula-
tion highlighted a concentration in exons 4 and 6, with c.689A > C being the prominent hotspot.

Conclusion  Our findings emphasize the extensive clinical and genetic implications of GTPBP3-related mitochondrial 
disorders, particularly within the Chinese population, but further investigations are needed to explore the phenotype-
genotype correlation.
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Introduction
Mitochondria contain over 1500 proteins, with the major-
ity being encoded by the nuclear genome. The mitochon-
drial genome encodes 13 subunits of the mitochondrial 
oxidative phosphorylation (OXPHOS) system and is fur-
ther transcribed and translated into proteins by the mito-
chondria’s internal system [1, 2]. Initially, mitochondrial 
DNA (mtDNA) transcriptions produce mitochondrial 
ribosomal RNAs (mt-rRNAs) and mitochondrial transfer 
RNAs (mt-tRNAs) required for translation. According to 
the mt-mRNA template, mature mt-tRNAs are enzymati-
cally catalyzed by aminoacyl tRNA synthase to transport 
amino acid to the mitochondrial ribosome, facilitating 
the synthesis of new polypeptide chains [3]. The matura-
tion of mt-tRNA involves endonuclease cleavage, 3 ’end 
addition of CCA, and nucleobase modification. Post-
transcriptional nucleobase modification plays a crucial 
role in preserving the stability and spatial conformation 
of mt-tRNA molecules, ensuring efficient and accurate 
decoding [4–6]. Presently, 18 types of nucleobase modi-
fications have been identified on 22 different mt-tRNAs. 
Distinct modifications at various locations may corre-
spond to diverse physiological outcomes [3].

GTPBP3 is a highly conserved mt-tRNA modifying 
enzyme that plays a crucial role in the biosynthesis of 
τm5 (s2) U, which modifies the 34th nucleobase of mt-
tRNALeu(UUR), mt-tRNATrp, mt-tRNAGlu, mt-tRNAGln 
and mt-tRNALys [7 –9]. This modified nucleobase, also 
referred to as "wobble base", is essential for limiting the 
range of wobble base pairs, which helps to maintain an 
efficient decoding rate [10]. Defects in GTPBP3 often 
result in combined oxidative phosphorylation deficiency 
23 (COXPD23), with patients clinically manifesting a 
series of symptoms, such as hypotonia, seizures, dyspnea, 
feeding difficulties, developmental retardation, fatigue, 
and limited vision. The examination results often suggest 
myocardial hypertrophy, lactic acidosis, and T2 hyper-
signal in the bilateral thalamus, basal ganglia, and brain 
stem [11–13]. Currently, only 21 cases of GTPBP3 defi-
ciency have been reported [11–17]. Despite the collec-
tion of over 300 variants of ClinVar (www.​ncbi.​nlm.​nih.​
gov/​clinv​ar), the pathogenicity of the majority of these 
remains unknown, and there is a lack of clinical infor-
mation to facilitate accurate clinical diagnosis. Conse-
quently, there is a need to enhance our understanding of 
the clinical spectrum and genetic spectrum associated 
with GTPBP3 deficiency.

This study involved the recruitment of nine Chinese 
patients with GTPBP3 defects. We conducted in-depth 
analyses of clinical information and carried out cytologi-
cal function experiments to confirm the pathogenicity 
of the novel variants and broaden the genetic spectrum 
of GTPBP3. These findings will contribute to a deeper 

understanding of the intricate structure and function of 
the GTPBP3 protein, while also offering valuable insights 
for clinical diagnosis.

Results
Clinical presentations
Patient 1(P1, F-1 in Fig. 1A) is a female who was hospital-
ized at the age of 1-year-9-month-old due to experienc-
ing fever and seizures three times in a single day. Upon 
physical examination, she exhibited developmental delay 
and left ankle clonus. Laboratory tests revealed elevated 
levels of lactate in the blood (16  mM). Brain MRI indi-
cated abnormalities in the bilateral dorsal thalamus, cer-
ebellar dentate nucleus, and superior cerebellar peduncle. 
Echocardiography (ECG) revealed left ventricle enlarge-
ment and left ventricular wall thickening, which indicates 
hypertrophic cardiomyopathy. Genetic analysis revealed 
a GTPBP3 compound heterozygous mutation: c.689A > C 
inherited from the father and c.424G > A inherited from 
the mother.

Patient 2 (P2, F-2 in Fig. 1A) is a female born through 
full-term natural delivery. She exhibited delayed motor 
milestones and could not stand on her own at 9 months 
of age. At 1-year-1-month old, she was hospitalized due 
to vomiting for 4 consecutive days. Physical examina-
tion revealed hypotonia and hyperreflexia in the knee 
tendons. Blood lactate levels were elevated to 8.58 mM. 
Brain MRI showed abnormal signals in the bilateral 
thalamus and peduncle. Electroencephalogram (EEG) 
indicated diffuse delta waves as the predominant slow 
wave pattern, and echocardiography revealed decreased 
left ventricular function (ejection fraction (EF) = 54%) 
and mild regurgitation of the second, tricuspid, and pul-
monary valves. Genetic testing confirmed compound 
heterozygous variants in GTPBP3: c.934_957del inher-
ited from her father and c.689A > C inherited from her 
mother.

Patient 3 (P3, F-3 in Fig.  1A) experienced a sei-
zure with coma lasting 2  h at the age of 3  years and 
8  months. Her condition rapidly deteriorated, pre-
senting with unconsciousness, abnormal breathing 
patterns, decreased oxygen saturation, and impaired 
liver function accompanied by uncorrectable meta-
bolic acidosis. Laboratory examination revealed a 
blood glucose level of 27  mM, blood lactate level of 
16  mM, blood ammonia level of 94  μM, alanine ami-
notransferase of 283.3U/L, aspartate aminotransferase 
of 716.6 U/L. Brain MRI revealed abnormal signals in 
the bilateral thalamus, peduncle, and bilateral tempo-
roparietal cortex. EEG showed a slowing of basic waves, 
and ECG revealed that the left atrium and left ventricle 
were slightly enlarged, and the left ventricular systolic 
function was normal (EF = 55%, FS = 28%). Genetic 
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examination revealed compound heterozygous vari-
ants in GTPBP3: c.689A > C (paternally inherited) and 
c.127C > T (maternally inherited).

Patient 4 (P4, F-4 in Fig.  1A) is a young boy who 
was admitted to the hospital at the age of 4  years and 
8  months due to weakness that had persisted for over 
2 years. He experienced fatigue easily, had poor endur-
ance. Upon physical examination, it was noted that his 
growth and development were borderline normal, and 
he had astigmatism. Laboratory tests revealed a high-
sensitive troponin-I level of 0.026 ng/mL, NT-proBNP 
of 894 pg/ml, CK-MB of 21 U/L, and blood lactate level 
of 9.18  mM. Ultrasonography showed left ventricular 
enlargement, ventricular wall hypertrophy, and an EF 
of 38%, consistent with a diagnosis of heart failure with 
grade III cardiac function. Genetic testing revealed a 
homozygous variant in GTPBP3 (c.473 T > G).

Patient 5 (P5, F-5 in Fig. 1A) is a male infant who pre-
sented with rapid, shallow breathing and intermittent 
moaning starting at 20  h after birth. His blood lactate 
level was significantly elevated at 26 mM, indicating met-
abolic acidosis along with respiratory acidosis. Addition-
ally, neonatal disease screening using LC/MS revealed 
a marked increase in alanine. Genetic examination 
revealed GTPBP3 compound heterozygous mutation: 
c.413C > T inherited from her father and c.509_510del 
inherited from her mother.

Patient 6 (P6, F-6 in Fig. 1A) is a female child born to 
healthy, unrelated parents. Her sibling passed away at 
7  months due to a “brain disease”. Shortly after birth, 
developmental delays were noted in the child, present-
ing with symptoms of unsteady running, speech dis-
order, and limited comprehension. By the age of 2, she 
experienced sporadic seizures associated with colds and 

Female

Male

Proband

Patient

Death
cc..993344__995577ddeell2244

((pp..GG331122__VV331199ddeell));;

cc..668899AA>>CC

((pp..QQ223300PP))

FF--22

c.934_957del24
(p.G312_V319del)

c.689A>C
(p.Q230P)

II

IIII

cc..112277 CC>>TT

((pp..QQ4433**))

cc..112277 CC>>TT

((pp..QQ4433**));;

cc..668899AA>>CC

((pp..QQ223300PP))

cc..668899AA>>CC

((pp..QQ223300PP))

FF--33

II

IIII

cc..447733 TT>>GG

((pp..VV115588GG))
cc..447733 TT>>GG

((pp..VV115588GG))

cc..447733 TT>>GG

((pp..VV115588GG)),, hhoomm

cc..447733 TT>>GG

((pp..VV115588GG))

FF--44

II

IIII

cc..441133 CC>>TT

((pp..AA113388VV));;

cc..550099__551100ddeellAAGG

((pp..EE117700GGffss**4422))

FF--55

II

IIII

cc..550099__551100ddeellAAGG

((pp..EE117700GGffss**4422))

cc..441133 CC>>TT

((pp..AA113388VV))

pp..QQ4433** pp..VV115588GGpp..RR6633** pp..EE114422KKpp..AA113388VV pp..QQ223300PP pp..NN225599SS pp..TT228833NN

cc..442244 GG>>AA

((pp..EE114422KK))

cc..668899AA>>CC

((pp..QQ223300PP))

FF--11

II

IIII

cc..668899AA>>CC

((pp..QQ223300PP));;

cc..442244 GG>>AA

((pp..EE114422KK))

AA

BB

c.848C>A
(p.T283N)

cc..884488CC>>AA

((pp..TT228833NN));;

cc..668800__669911dduupp

((pp..QQ223300__VV223311iinnssGGAALLQQ))

cc..668800__669911dduupp

((pp..QQ223300__VV223311

iinnssGGAALLQQ))

FF--77

II

IIII

cc..668899AA>>CC

((pp..QQ223300PP));;

cc..11009922__11110033ddeell

((pp..DD336644__RR336688ddeell))

cc..11009922__11110033ddeell,,

((pp..DD336644__RR336688ddeell))

FF--99

II

IIII

cc..668899AA>>CC

((pp..QQ223300PP))

cc..777744__777755iinnssCC

((pp..NN225599QQffss**2288))
cc..668899AA>>CC

((pp..QQ223300PP))

FF--88

cc..668899AA>>CC

((pp..QQ223300PP));;

cc..777744__777755iinnssCC
((pp..NN225599QQffss**2288））

II

IIII

cc..777766 AA>>GG

((pp..NN225599SS))

cc..118877 CC>>TT

((pp..RR6633**));;

cc..777766 AA>>GG

((pp..NN225599SS))

FF--66

II

IIII

cc..118877 CC>>TT

((pp..RR6633**))

pp..EE117700GGffss**4422 pp..QQ223300__VV223311iinnssGGAALLQQ pp..NN225599QQffss**2288 pp..GG331122__VV331199ddeell pp..DD336644__RR336688ddeell

Fig. 1  Pedigree diagram of patients and amino acid conservative analysis. a Pedigree map of family 1–9. The black arrow indicates the proband, 
the box indicates the male, the circle indicates the female, the black solid shape indicates the patient, the black slash indicates the death 
of unknown cause, and the red font indicates the newly discovered variants of GTPBP3. b The amino acid conservation analysis of variants 
across species
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fever once or twice a year. Physical examination revealed 
increased muscle tone in the limbs, left eye esotropia, 
and restricted external rotation. Elevated blood lactic 
acid levels at 6.94  mmol/L were observed, along with 
abnormal signals in the bilateral thalamus and left cor-
tex on brain MRI. Additionally, the ECG displayed two 
generalized spikes and slow spikes during sleep. Cardiac 
ultrasound indicated mild regurgitation in the tricuspid 
valve, main arteries, and pulmonary arteries. Genetic 
testing identified a compound heterozygous muta-
tion in GTPBP3: c.187C > T (paternally inherited) and 
c.776A > G (maternally inherited).

Patient 7 (P7, F-7 in Fig.  1A) is a 3-year-old girl who 
was hospitalized due to multiple seizures. Genetic exami-
nation revealed GTPBP3 compound heterozygous muta-
tion c.848C > A (paternally inherited) and c.680_691dup 
(maternally inherited).

Patient 8 (P8, F-8 in Fig. 1A), a male, was hospitalized 
at the age of 2 due to fever and seizures. He exhibited 
delayed motor development, weak muscle tone, hypo-
tonia, and fatigue. Elevated blood lactate levels were 
recorded at 8.3  mM. Brain MRI displayed abnormal 
hyperintensity signals in the basal ganglia. Genetic exam-
ination revealed GTPBP3 compound heterozygous muta-
tion c.689A > C (paternally inherited) and c.774_775insC 
(maternally inherited).

Patient 9 (P9, F-9 in Fig. 1A) is the third child born to 
unrelated parents. His sister is normal, and his brother 
passed away at the age of 1  year and two months of 
unknown etiology. He presented with language devel-
opment delay and hypotonia of both lower limbs. Brain 
MRI revealed suspicious white matter abnormality. 
Genetic examination revealed GTPBP3 compound hete-
rozygous mutation: c.689A > C (paternally inherited) and 
c.1092_1103del (maternally inherited).

Detailed clinical presentations and other examination 
results are summarized in Table 1.

Pathogenicity prediction of variants
Cross-species amino acid conservative analysis (Fig. 1B) 
was carried out among different variants. Except for 
c.689A > C (p.Q230P), other residues are highly con-
served during evolution. The summary of pathogenicity 
analysis for genetic variants is presented in Table 2. gno-
mAD (http://​gnomad.​broad​insti​tute.​org) was an allele 
frequency annotations database [18]. The variants were 
either absent or the frequency was extremely low in the 
population. SIFT (http://​sift-​dna.​org) and PolyPhen-2 
(http://​genet​ics.​bwh.​harva​rd.​eduy/​pph2) were the typi-
cal pathogenicity prediction tools for non-synonymous 
single nucleotide substitution [19, 20]. MutationTaster 
(https://​www.​mutat​ionta​ster.​org) works on the DNA 
level, also suitable for indels. The score of c.413C > T, 

c.424G > A, c.473  T > G, c.776A > G, and c.848C > A in 
SIFT all greater than 0.05. And the score of c.413C > T, 
c.424G > A, c.473  T > G, c.776A > G and c.848C > A in 
PolyPhen-2 all greater than 0.909. Almost variants are 
predicted to be disease-causing in MutationTaster. 
Moreover, MUpro (http://​mupro.​prote​omics.​ics.​uci.​
edu/) was used to predict the change in protein stabil-
ity [21]. It seems that c.413C > T, c.424G > A, c.473 T > G, 
c.689A > C, c.776A > G, and c.848C > A were more likely 
to lead to decreased protein stability.

In summary, a total of thirteen variant sites were 
involved in nine pedigrees, with five have been reported 
and eight novel variants. While predictive analyses 
indicate potential defects in all variants, confirmation 
through additional biological functional verification is 
required.

Decreased GTPBP protein levels and impaired 
mitochondrial function were observed in patient‑derived 
immortalized lymphocytes
Four patients (P1-P4) and three age-matched healthy 
children as controls were included in the immortal-
ized lymphocyte experiments. Initial validation of the 
immortalized lymphocytes was conducted through 
Sanger sequencing, confirming consistency with the 
previous genetic examination (Supplementary Fig.  1A). 
Analysis comparing the steady-state GTPBP3 protein 
levels in patients P1-P4 with the normal control group 
revealed significant decreases of 82.8% (p < 0.001), 79.1% 
(p < 0.001), 74.4% (p < 0.001), and 25.5% (p = 0.036) 
respectively (Fig. 2A, B). These findings highlight the sub-
stantial reduction in GTPBP3 protein levels in patient-
derived lymphocytes.

As previously mentioned, GTPBP3 is a highly con-
served mt-tRNA modifying enzyme essential for the 
mitochondrial protein translation process [7]. To fur-
ther elucidate its impact on mitochondrial function, 
BN-PAGE is a common technique optimized for the 
analysis of the five complexes (CI–CV) of OXPHOS 
(Fig.  2C–E) [22, 23]. Compared with the control, the 
content of CI, CIII, CIV, and CV was decreased in P1 
and P2 (Fig. 2C, D). Additionally, in P4, the content of 
complex CIII was decreased, while no significant dif-
ferences were observed in the abundance of mitochon-
drial complexes in P3 (Fig.  2E). To further detect the 
mitochondrial respiratory capacity, the oxygen con-
sumption levels in lymphocytes were measured [24, 
25]. The basal respiration rate was measured under 
normal conditions. Oligomycin was used to inhibit 
ATP synthase, allowing for the calculation of the 
corresponding OXPHOS-related oxygen consump-
tion rate (OCR). FCCP was used to disrupt the pro-
ton gradient and mitochondrial membrane potential, 
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stimulating cells to reach their maximum respira-
tion potential [26]. As a result, basal OCR of P1was 
decreased by 23.7% (p < 0.001), P2 decreased by 30.2% 
(p < 0.001), P3 decreased by 20.4% (p < 0.001) and P4 
decreased by 14.4% (p = 0.0012). The OCR of oxida-
tive phosphorylation decreased by 57.8% (p < 0.001) 
in P1, 54.0% (p < 0.001) in P2, 47.4% (p < 0.001) in P3, 
and 57.4% (p < 0.001) in P4. The maximum respiration 
potential of P1 was decreased by 31.3% (p < 0.001), P2 
was decreased by 29.9% (p < 0.001), P3 was decreased 
by 20.1% (p = 0.0018) and P4 was decreased by 19.4% 
(p = 0.0024) (Fig. 2F). In summary, the OXPHOS func-
tion of P1-P4 was impaired to varying degrees.

Re‑expression of wild‑type vectors rescues the deficit 
in GTPBP3 expression level and OXPHOS complexes
To further investigate the impact of GTPBP3 on mito-
chondrial functions, we utilized CRISPR-Cas9 technol-
ogy to generate a HEK293T GTPBP3 knockout (KO) 
cell model, which was then rescued by re-expressing 
wild-type GTPBP3. Western blot analysis confirmed 
the reduced level of GTPBP3 protein in the KO cell 
model (Fig.  3A). Additionally, blue native polyacryla-
mide gel electrophoresis (BN-PAGE) revealed signifi-
cant decreases in Complexes I, III, IV, and V (Fig. 3B), 
consistent with findings in patient-derived lympho-
cyte models. Subsequent analysis of the re-expressed 
cells through WB and BN-PAGE demonstrated partial 
recovery of the observed defects (Fig. 3C, D).

Protein abundance decreased in GTPBP3 site‑directed 
mutagenesis cell model
According to instructions of the Standard and guidelines 
for the interpretation of sequence (2015) published by 
the American Society for Medical Genetics and Genom-
ics (ACMG) [27], nonsense mutations, frameshifts, ± 1 
or 2 canonical splice sites, initiation codons, and large 
deletions, all have pathogenic very strong evidence, com-
bined with extremely low population frequency, they can 
be distributed to Likely pathogenic (LP) at least. Cyto-
logical function experiments can provide strong evidence 
for pathogenicity analysis, which was a milestone signifi-
cance for VUS variants [28, 29]. Re-expressing GTPBP3 
carrying mutant vectors of c.127C > T, c.187C > T, 
c.473 T > G, c.776A > G, c.848C > A and mutation hot spot 
(c.689A > C) vectors in GTPBP3 KO cells, mutations were 
identified by Sanger sequencing (Supplementary Fig. 1B).

To eliminate the interference of wild-type GTPBP3 
protein, the GTPBP3 vectors carrying different muta-
tions were transfected into KO cell lines. As shown 
in Fig.  4A, when compared with KO + GTPBP3 
cell line, KO + c.127C > T decreased by 97.8% 
(p < 0.001), KO + c.187C > T decreased by 99.6% 
(p < 0.001), KO + c.424G > A decreased by 94.8% 
(p < 0.001), KO + c.473  T > G decreased by 32.9% 
(p = 0.0064) and decreased by 45.7% (p < 0.001) in 
KO + c.689A > C. No significant decrease was found 
in KO + c.776A > G and KO + c.848C > A. It needs 
to be considered that there are differences in vector 
copy number among cell lines [30, 31]. We designed 

Table 2  The annotations of variants

*SIFT score: 0.0–0.05 means deleterious and 0.05–1.0 means tolerated; PolyPhen-2 score: 0.0–0.446 is Benign, 0.447–0.908 is possibly damaging and 0.909–1.0 for 
probably damaging; D-prediction disease causing, P-prediction polymorphism

NA: not found

Variant (NM_032620.4) Exon Amino acid change gnomAD SIFT Polyphen-2 MutationTaster MUpro

c.127C > T 2 p.Q43* NA NA NA D NA

c.187C > T 2 p.R63* NA NA NA D NA

c.413C > T 4 p.A138V  < 1‰ 0.01 1.000 D Decreased

c.424G > A 4 p.E142K NA 0.00 1.000 D Decreased

c.473 T > G 4 p.V158G NA 0.05 0.999 D Decreased

c.509_510del 4 p.E170Gfs*42  < 1‰ NA NA D NA

c.680_691dup 6 p.Q230_V231insGALQ NA NA NA P NA

c.689A > C 6 p.Q230P  < 1‰ 0.25 0.091 D Decreased

c.774_775insC 6 p.N259Qfs*28  < 1‰ NA NA D NA

c.776A > G 6 p.N259S  < 1‰ 0.00 1.000 D Decreased

c.848C > A 7 p.T283N NA 0.00 0.999 D Decreased

c.934_957del 7 p.G312_V319del  < 1‰ NA NA D NA

c.1092_1103del 8 p.D364_R368del NA NA NA D NA
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primers targeting to the 3’ end of the CDS and PGK 
promoter which was a conserved region on vectors 
to assess the relative level of vectors. As shown in 
Fig. 4B. The vector levels of each cell lines were com-
pared with KO + GTPBP3 cell line, KO + c.127C > T 
was 3.2 times (p < 0.001), KO + c.187C > T was 
2.4 times (p < 0.001), KO + c.424G > A was 1.8 
times (p = 0.0118), KO + c.473  T > G was 3.7 
times (p < 0.001), and KO + c.689A > C was 2.8 
times (p < 0.001), KO + c.776A > G was 2.5 times 
(p < 0.001), KO + c.848C > A was 3.2 times (p < 0.001), 
KO + c.1384C > G was 4.8 times (p < 0.001). Once the 
relative efficiency level further corrected the protein 
content, the masked differences of KO + c.776A > G 
and KO + c.848C > A can be uncovered (Fig. 4C).

Analysis of genetic variants spectrum 
and phenotype‑genotype correlation of GTPBP3
The initial report by Robert Kopajtich et al. in 2014 doc-
umented 11 cases of GTPBP3 mutations [11]. To date, 
in total of 21 cases with 23 distinct variants of GTPBP3 
have been reported. By incorporating these reported 
variants with the 8 novel variants identified in our study, 
the genetic spectrum of the GTPBP3 gene was expanded 
(Fig.  5A). Notably, variants identified in the Chinese 
population are marked in yellow (Fig. 5A), we noted that 
c.689A > G is most common in the Chinese population. 
Moreover, our analysis revealed that the variant sites are 
predominantly concentrated in exon 4 and exon 6, with 
c.689A > C showing high frequencies of 8/51, indicating it 
as a hot spot mutation site within this population.

Based on the protein’s functional domains, the muta-
tions can be roughly categorized into four regions, which 
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are mitochondrial targeting sequence (MTS, M), GTP-
box (G), C-terminal (C), and other undetermined (U) 
regions [11]. Combined with previous cases, the charac-
teristics were summarized as follows (Fig. 5B–D). Firstly, 
the onset age for all cases was under 10 years old, with a 
trend to earlier onset in the M/U region (Fig.  5B). Sec-
ondly, the clinical outcomes of patients in the M/U region 
more servere, with a higher proportion mortality ratio 
(Fig. 5C). In terms of muscle involvement, individuals in 
the M/G/U region were usually affected by dual involve-
ment. Those in the C region tended to exhibit muscle 
involvement, along with energy deficiency along with 
energy deficiency symptoms like fatigue and mild myo-
cardial hypertrophy (limited by the small number of case 
samples) (Fig. 5D). Overall, it appears that symptoms in 
the C region were relatively mild, may due to the smaller 
sample size. Lastly, all patients exhibited hyperlactatemia, 
and the majority experienced developmental delay along 
with muscle and/or nerve involvement (such as cardiac 
hypertrophy, seizures, hypermyotonia, or hypotonia) 
and abnormal brain MRI. They may also present with 
dyspnea, feeding difficulties, short stature, and occasion-
ally visual impairment, as well as cardiac abnormalities. 
These cardiac abnormalities can include conduction and 

heart valve issues. Notably, valvular insufficiency was ini-
tially linked to GTPBP3 deficiency in our study.

Discussion
GTPBP3 is a catalytic enzyme involved in the synthesis 
of τm5(s2) U in mitochondria and has been associated 
with mitochondrial diseases. Since Robert Kopajtich 
first described the phenotypes associated with 11 cases 
of GTPBP3 deficiency [11]. At present, there are only 
several sporadic cases. However, restricted by the small 
number of cases, the disease-related phenotypes are 
incomplete, and the mutation spectrum still needs to 
improve. The correlation between genotype and phe-
notype remains to be further studied. According to 
previous studies, changes in oxidative phosphoryla-
tion complex enzyme activity of skeletal muscle and 
fibroblasts, several mitochondrial subunits protein lev-
els as well as mitochondrial oxygen consumption rate 
under different culture conditions in patient-derived 
fibroblasts have been presented [11]. However, there 
are still few studies on patient-derived cell models, 
and the studies are only for individuals, and the sub-
jects are inconsistent. We constructed patient-derived 
immortalized lymphocyte cell lines and performed BN-
PAGE to preserve their native structure of OXPHOS 
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complexes and subsequently oxygen consumption rates 
detection. Our results agree with the conclusion that 
GTPBP3 deficiency led to mitochondrial dysfunction. 
However, the new phenotypes including heart valve 
involvement and strabismus were first proposed in this 
study.

The level of residual steady-state GTPBP3 protein 
seems to be correlated with the degree of mitochondrial 
impairment, except for P3, which may be due to the fol-
lowing hypotheses: (1) The produced mitochondrial 
complex protein is useless in this patient, so the protein 
level does not change significantly, but the activity of 
complex enzyme is severely impaired [25]; (2) The dis-
advantage of immortalized lymphocytes is that the phe-
notype is not obvious [32, 33]; (3) Cells were cultured in 
a high-nutrient environment, and excessive reliance on 
glycolysis can compensate for the deficiency. In other 
words, stress culture can make the difference obviously 
[33, 34]. In the results of GTPBP3 protein level detection 
on site-directed mutagenesis cell models, c.776A > G and 
c.848C > A were inconsistent with the predicted results. 
The possible reasons were as follows: (1) The mutations 
did not affect the protein level but affected the enzyme 
catalytic activity [25]; (2) Different transfection and rep-
lication efficiency of plasmids would affect the protein 

expression level 35, 36. The results showed that the plas-
mids expression level in all site-mutant cell lines was 
higher than control. As a result, the pathogenicity of 
c.776A > G and c.848C > A cannot be ruled out.

The reduction of protein level may be due to the 
decrease in protein production and/or the acceleration 
of protein degradation [37–39]. Previous studies have 
shown that the GTPBP3 protein is extensively modified 
by ubiquitination and degraded through the proteasome 
pathway 7. To avoid rapid protein degradation, we first 
treated the cells with MG-132 for 6 h, then inhibited cell 
protein synthesis by CHX treatment, the degree of degra-
dation of target protein can be observed within 24h [38, 
40–42] (Supplementary Fig. 2A). It was found that com-
pared with the control group, c.127C > T and c.187C > T 
significantly decreased after 6 h of treatment, suggesting 
that c.127C > T and c.187C > T accelerated the degrada-
tion of GTPBP3 protein and reduced the stability of the 
protein (Supplementary Fig. 2B).

In summary, we enrolled 9 individuals with GTPBP3 
deficiency. We identified 8 novel variants, which were 
c.127C > T, c.187C > T, c.473  T > G, c.680_691dup, 
c.774_775insC, c.776A > G, c.848C > A and 
c.1092_1103del, respectively. 7 mutations were screened 
to construct site-directed mutagenesis cell models and 

KO: GTPBP3 KO#1

KO+GTPBP3: GTPBP3 KO#1+GTPBP3

127: GTPBP3 KO+GTPBP3 c.127C>T 

187: GTPBP3 KO+GTPBP3 c.187C>T

424: GTPBP3 KO+GTPBP3 c.424G>A

473: GTPBP3 KO+GTPBP3 c.473T>G

689: GTPBP3 KO+GTPBP3 c.689A>C
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cytological function experiments were performed. It 
was confirmed that c.127C > T, c.187C > T, c.424G > A, 
c.473  T > G, and c.689A > C were pathogenic mutations. 
GTPBP3 mutation spectrum was expanded, and it was 
found that mutations in the Chinese population were 
mostly concentrated in exon 4 and exon 6, and c.689A > C 
and c.424G > A were hot spots in the population. This 
study highlights the important role of mt-tRNA modifi-
cation defects in mitochondrial diseases and provides a 
reference for the diagnosis of diseases related to GTPBP3 
deficiency, as well as subsequent prenatal diagnosis and 
genetic counseling.

Methods
Study participant
Patients were born from 9 non-consanguineous fami-
lies. Patients 5 and 6 underwent evaluation at Xiangya 
Hospital, Central South University, while other patients 
were recruited and assessed at Peking University First 

Hospital. Approval for this study was obtained from the 
Ethics Committees of both Peking University First Hos-
pital (Ethics approval number:  2017–217) and Xiangya 
Hospital (Ethics approval number:  201605585). Moreo-
ver, informed consent was obtained from all participants 
or guardians.

Genetic analysis
DNA was extracted from peripheral blood samples of 
probands and their parents. Whole exome sequencing 
(WES) and mitochondrial genome sequencing were per-
formed using the HiSeq 2000 sequencer (Illumina, USA). 
Sanger sequencing was then carried out as a follow-up 
to validate the identified mutations [43, 44]. The specific 
primers used are detailed in Supplementary Table 1.
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Immortalized lymphocytes construction
As previously outlined [45, 46], mononuclear cells were 
isolated from the peripheral blood using the lymphocyte 
separation medium (Solarbio, China). These isolated 
cells were continuously stimulated by Epstein-Barr virus 
(EBV). Furthermore, 0.5  mg/mL phytohemaggluti-
nin (Sigma-Aldrich, USA) and 1  mg/mL cyclosporin A 
(Sigma–Aldrich) were also added to the culture medium.

Plasmids construction and transfection
As previously described [46, 47], Knockout (KO) plas-
mids were constructed using the CRISPR/Cas9 technol-
ogy, and gRNAs were annealed to duplexes and inserted 
into pX330 vector. As for overexpression (OE) plasmid, 
GTPBP3 was synthesized by Phanta Max Super-Fidelity 
DNA Polymerase (Vazyme, China) and cloned into lenti-
viral pLVX vector by ClonExpression® II One Step Clon-
ing Kit (Vazyme), and site-specific mutant vectors were 
obtained from Tsingke (Tsingke Biotechnology, China). 
All constructions were confirmed by Sanger sequencing. 
Transfection was performed with Lipofectamine 3000 
reagent (Invitrogen, USA) according to the manufactur-
er’s instructions. KO cell lines were selected by limiting 
dilution, and OE cell lines and site-mutant cell lines were 
generated by infection of the cells with lentiviral particles 
and puromycin (Sangon Biotech, China) selection.

Cell culture
Immortalized lymphocytes from patients were cultured 
in RPMI 1640 medium (Thermo Fisher Scientific) supple-
mented with 10% fetal bovine serum (GIBCO, USA) and 
1% penicillin/streptomycin, as well as 50 mg/mL uridine 
(Sigma-Aldrich).

HEK293T was a gift from Dr. Haihua Gu (Wenzhou 
Medical University). HEK293T and other cell models 
generated from HEK293T were cultured in Dulbecco’s 
modified Eagle medium (DMEM, Thermo Fisher Scien-
tific, USA) containing 12% calf serum (Sigma-Aldrich) 
and 1% penicillin/streptomycin. 2  μg/mL puromycin 
(Sangon, China) was extremely added to cell models gen-
erated from HEK293T. All cells were cultured with 5% 
CO2 at 37 °C in an incubator.

Quantitative real‑time PCR (qPCR) detection
RNA was extracted according to the TRIzol Reagent 
protocol (Thermo Fisher Scientific) 48. Complementary 
DNA (cDNA) was synthesized by PrimeScript RT rea-
gent Kit (Takara Biotechnology, Japan). For quantification 
transcripts expression level, qPCR was performed with 
2xChamQ SYBR qPCR Master Mix (Vazyme, China). 
Primers are provided in Supplementary Table 1.

Immunoblotting
For sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis (SDS-PAGE), a total protein isolated from whole 
cell using RIPA lysis buffer (Cell Signaling Technology, 
USA) with 1  mM phenylmethylsulfonyl fluoride (PMSF, 
Sangon Biotech, China).

For Blue native polyacrylamide gel electrophoresis 
(BN-PAGE), as previously described 22, mitochondrial 
membrane protein was extracted from a whole cell using 
2% Triton-X100 (Sigma-Aldrich) and subsequently sepa-
rated by a 3.5%−16% gradient gel. Proteins were elec-
troblotted onto 0.22 um PVDF membranes (Bio-rad, 
USA) and blocked with 5% milk powder solution, incu-
bated with primary and secondary horseradish perox-
idase-conjugated antibodies (Supplementary Table  2). 
Signals detected with clarity ECL western blotting (WB) 
substrate (Bio-Rad).

Mitochondrial respiration measurement
The detection of oxygen consumption rate (OCR) was 
conducted as described before [44, 49]. Concisely, about 
5 × 106 immortalized lymphocytes were harvested and 
added to the chamber of Oxygraph-2 k (Oroboros, Aus-
tria). The respiration was recorded under normal con-
ditions and with subsequent injection with inhibitors, 
including oligomycin (0.1 mM, Sigma–Aldrich) and car-
bonyl cyanide 4-(trifluoromethoxy) phenylhydrazone 
(FCCP, 0.1 mM, Sigma–Aldrich).

Cycloheximide (CHX) chase assay
Cells were seeded on 24-well cell culture plates (10,000 
cells per well). Once the confluence reached 90%, cells 
were pretreated with a complete medium containing 
10uM MG132 for 6  h. After washing cells twice with 
PBS, the culture medium was converted to a complete 
medium containing 20uM cycloheximide (CHX). Sam-
ples were harvested at 0, 3, 6, 12, and 24  h after CHX 
treatment for SDS-PAGE detection.

Statistical analysis
All quantitative data were performed for three or more 
times, independently. Statistical analysis and graphs were 
plotted using Prism 8.4.0. The results were shown with 
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mean ± SD. When the data conforms to a normal distri-
bution, independent double-tailed student t was used. If 
not, the Mann–Whitney U test is used. Three or more 
groups of data were compared using one-way analysis of 
variance (ANOVA), p < 0.05 indicates statistical signifi-
cance, *p < 0.05, **p < 0.01, ***p < 0.001.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13023-​024-​03469-3.

 Additional file 1: Fig. S1 Sanger Sequencing of patients and GTPBP3 
mutant plasmids. Sanger sequencing of 4 patient-derived immortalized 
lymphocytes. Sanger sequencing of 7 constructed plasmids inserted 
with GTPBP3 carrying different variants. Fig. S2 Stability analysis of GTPBP3 
protein expression level analysis of HEK293T cell lines carrying different 
variants. The WB of GTPBP3-KO carrying different variants plasmidscell 
lines treated with CHX for 0-24 h. TOM70 was used as a loading control. 
An asterisk indicates the target strip.The relative abundance of Figure 
S2A were corrected by relative plasmid copy number levels. Data are 
presented as the means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p 
< 0.0001.

Additional file 2: Table S1. The sequence of primers and gRNAs. 
Table S2. The antibodies for immunoblotting.
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