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Abstract
Background Duchenne muscular dystrophy (DMD) patients are monitored periodically for cardiac involvement, 
including cardiac MRI with gadolinium-based contrast agents (GBCA). Texture analysis (TA) offers an alternative 
approach to assess late gadolinium enhancement (LGE) without relying on GBCA administration, impacting DMD 
patients’ care. The study aimed to evaluate the prognostic value of selected TA features in the LGE assessment of DMD 
patients.

Results We developed a pipeline to extract TA features of native T1 parametric mapping and evaluated their 
prognostic value in assessing LGE in DMD patients. For this evaluation, five independent TA features were selected 
using Boruta to identify relevant features based on their importance, least absolute shrinkage and selection operator 
(LASSO) to reduce the number of features, and hierarchical clustering to target multicollinearity and identify 
independent features. Afterward, logistic regression was used to determine the features with better discrimination 
ability. The independent feature inverse difference moment normalized (IDMN), which measures the pixel values 
homogeneity in the myocardium, achieved the highest accuracy in classifying LGE (0.857 (0.572–0.982)) and also was 
significantly associated with changes in the likelihood of LGE in a subgroup of patients with three yearly examinations 
(estimate: 23.35 (8.7), p-value = 0.008). Data are presented as mean (SD) or median (IQR) for normally and non-
normally distributed continuous variables and numbers (percentages) for categorical ones. Variables were compared 
with the Welch t-test, Wilcoxon rank-sum, and Chi-square tests. A P-value < 0.05 was considered statistically significant.

Conclusion IDMN leverages the information native T1 parametric mapping provides, as it can detect changes in the 
pixel values of LGE images of DMD patients that may reflect myocardial alterations, serving as a supporting tool to 
reduce GBCA use in their cardiac MRI examinations.
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Background
Duchenne muscular dystrophy (DMD) is a severe 
X-linked genetic disease that affects predominantly 
males (carrier females may also exhibit subtle myocar-
dial changes), generating progressive muscle deteriora-
tion and severe motor impairments [1]. Considering their 
risk for developing cardiac pathologies [1], sufferers must 
be periodically examined for cardiac involvement, typi-
cally once yearly [2]. Their screening starts at a young age 
and might include cardiac magnetic resonance imaging 
(MRI) to characterize their myocardial tissue and evalu-
ate and monitor their cardiac health [1–4]. This imag-
ing modality encompasses advanced techniques, such as 
native T1 parametric mapping, which quantifies the lon-
gitudinal relaxation time and provides detailed informa-
tion about tissue composition [5, 6], and late gadolinium 
enhancement (LGE), which assesses myocardial tissue 
and requires the use of gadolinium-based contrast agents 
(GBCA) [7, 8].

Even though LGE is highly reproducible, it may not 
be suitable for patients with renal impairment, as it has 
been shown that GBCA deposition, though without sub-
stantial clinical effects, may be associated with the devel-
opment of nephrogenic systemic fibrosis (NSF) in this 
group [9–14]. Moreover, other effects of GBCA in differ-
ent populations, such as gadolinium retention in the cen-
tral nervous system [15], nonuniform deposition in the 
brain [9, 16], and mild and moderate adverse reactions 
have been reported [17]. Nonetheless, the adverse effects 
of GBCA use are an active research topic.

So far, no studies have focused on GBCA deposition 
specifically in DMD patients, although concerns about 
their general long-term safety persist [18, 19], includ-
ing the need for a more conservative approach to GBCA 
use in those with documented LGE [20]. It has also been 
reported that DMD patients might be at risk of develop-
ing kidney impairment due to the nature of the disease 
[19], even in advanced stages [21], meaning that in such 
cases, GBCA administration may need to be avoided 
due to the risk of NSF and potential deposition effects. 
An additional but less frequently addressed concern, 
despite its clinical relevance, is the administration of 
GBCA in DMD patients with difficult intravenous access. 
Although different techniques are proposed in the lit-
erature to face this challenge in broader contexts [22], in 
DMD sufferers, it often requires multiple attempts and 
is not always successful, indicating that non-contrast 
cardiac MRI may be more suitable for these cases where 
GBCA administration is not possible or is contraindi-
cated [4, 20]. Therefore, minimizing the need for contrast 
use while maintaining the diagnostic accuracy of cardiac 
MRI remains a critical challenge [20, 23]. DMD patients 
might benefit from alternative approaches, including 

computational-based ones, to fully take advantage of the 
diagnostic potential of native cardiac MRI methods.

A step towards reducing GBCA use in cardiac MRI 
in DMD patients is the application of texture analysis 
(TA), a radiomics-based technique focused on mining 
data contained in images to quantify features that allow 
the extraction of information about tissues’ underlying 
structure and possibly function [24–27]. Its application in 
MRI for several cardiac pathologies has increased lately 
[27–36], as it could promote a strategic shift toward a 
safer and more effective approach for yearly cardiac MRI 
controls. In DMD patients, TA could improve the capa-
bility of T1 parametric mapping to detect diffuse myo-
cardial alterations, enhancing its diagnostic value. While 
alternative radiomics-based approaches exist [24, 25, 37], 
TA quantifies image heterogeneity, possibly correlating 
with fibrosis and microstructural changes [24, 25].

This study was necessary to explore the impact of TA 
in native T1 parametric mapping as a contrast-free, com-
putational approach to assess LGE in DMD patients, 
addressing the need to reduce the use of GBCA in their 
monitoring, given the potential risks associated with 
repeated contrast exposure.

Methods
We hypothesize that TA features extracted from cardiac 
MRI parametric native T1 maps can provide information 
about LGE in DMD patients, potentially reducing the 
need to use GBCA in their yearly controls. Therefore, this 
study aims to evaluate the prognostic value of selected 
TA features in the LGE assessment of DMD patients.

Study population
We retrospectively included 67 patients diagnosed with 
DMD and analyzed the first cardiac MRI examination 
at the start of their regular screening. Fifteen were ran-
domly selected and reserved for the first step of the study. 
The remaining patients with complete examinations, i.e., 
with LGE data (LGE + and LGE-), were matched by age 
using optimal full matching with a logistic regression 
model to estimate the probability of LGE status [38, 39]. 
This approach creates subclasses that minimize age dif-
ferences, resulting in balanced groups for comparison. 
Exams without LGE images corresponded to examina-
tions where inserting the intravenous contrast bolus was 
not possible because of difficult venous access.

The cardiac MRI examinations were performed from 
December 1st, 2016, to December 2nd, 2022. These 
patients were earlier screened by the Parent Project from 
the Czech Republic [40–43] following the principles 
from the Declaration of Helsinki (2000) by the World 
Medical Association. The institutional ethics commit-
tee at the Hospital approved the original study (reference 
number blinded for review). All participants had written 
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informed consent from their legally authorized represen-
tatives or the subjects themselves. Their clinical data was 
retrieved from the Hospital Information System.

Cardiac MRI data acquisition
Cardiac MRI studies were performed on a 1.5 T scan-
ner (Ingenia, Philips Medical Systems) following a stan-
dard protocol [44]. Long-axis and short-axis cine images 
were acquired with balanced turbo field echo steady-state 
free precession (SSFP) sequences. T1 parametric map-
ping was performed at the mid-ventricular level in the 
short-axis orientation using a modified Look-Locker 
inversion recovery sequence (MOLLI) before and 15 min 
after a contrast bolus injection [0.2 mmol/kg, gadobutrol 
(Gadovist, Bayer)]. MOLLI acquisition schemas of 5(3)3 
and 4(1)3(1)2 were used for native and post-contrast T1 
maps, respectively.

Finally, LGE images were acquired approximately 
10  min after the contrast bolus injection with an inver-
sion-recovery turbo field echo (IR-TFE) sequence, reveal-
ing contrast-enhanced areas in both long- and short-axis 
views. Typical parameters for selected cardiac MRI 
sequences in the protocol are listed in Table 1.

Clinical assessment
An expert radiologist performed the clinical assessment 
according to the established clinical protocols [45] using 
the IntelliSpace Portal (ISP) workspace (version 11, Phil-
ips Healthcare). Quantitative assessment of the left ven-
tricular (LV) and right ventricular (RV) functions was 
described through the ejection fraction (EF), end-dia-
stolic volume (EDV), end-systolic volume (ESV), stroke 
volume (SV), and cardiac output (CO). The assessment 

used cine images and also included the LV mass (LVM), 
tricuspid annular plane systolic excursion (TAPSE), 
mitral annular plane systolic excursion (MAPSE), and 
RV wall thickness (RVWT). LV and RV volumes were 
indexed to the body surface area (BSA), indicated at the 
end of the abbreviations with the letter I. Two clinical 
experts assessed LGE by identifying an area of contrast 
enhancement where the signal was higher than the mean 
signal intensity of a reference myocardium zone.

Cardiac MRI T1 mapping assessment
Using the commercial software cvi42 (release 5.13.9, 
Circle Cardiovascular Imaging, Calgary, Canada), two 
experienced readers performed T1 parametric map-
ping assessments. The readers were blinded to the per-
sonal and clinical data. They traced the endocardial and 
epicardial contours in a mid-ventricular slice, excluding 
the trabeculae and the myocardial blood pool. Then, they 
verified the alignment in each slice and registered the 
images with a contour-based registration method. Finally, 
they generated and exported the motion-corrected native 
T1 maps for further analysis.

Texture analysis
A successful pipeline was developed to perform the tex-
ture analysis in all patients using PyRadiomics (v3.1.0) 
[46] and Python (v3.7.16). DICOM images of motion-
corrected native T1 maps were converted to NIfTI (Neu-
roimaging Informatics Technology Initiative) format 
for further processing. The corresponding myocardial 
mask, i.e., the endocardial and epicardial contours, was 
obtained with an in-house algorithm that extracted con-
tour coordinates and mapped them onto the native T1 
map image. The images were resampled to 1.17 × 1.17 mm 
to ensure consistency.

TA was performed on the original images with intensi-
ties normalized between µ ± 3σ (µ, the mean value of the 
gray levels inside the myocardium, and σ, the standard 
deviation) [47] without and with different filters: gradi-
ent filter, square filter, local binary pattern filters with 8 
points and radius 1 and 2 (LBP(8,1) and LBP(8,2), respec-
tively), and 2D discrete wavelet low- and high-frequency 
sub-bands filters (LL, LH, HL, HH).

Texture feature selection
Feature selection started by identifying highly repro-
ducible features by the inter-rater reliability through the 
intraclass correlation coefficient (ICC) and the coefficient 
of variation (CV). Two readers independently analyzed 
15 randomly selected studies, and one repeated the anal-
ysis one month later. These studies were removed from 
the primary dataset to minimize potential data depen-
dencies. Features with both intra- and interobserver 

Table 1 Cardiac MR imaging protocol typical parameters
Parameter Cine SSFP MOLLI LGE
Field of 
view (mm)

300 × 300 300 × 300 319 × 319

Acquisition 
voxel size 
(mm)

1.67 × 1.67 × 8.00 2.00 × 2.00 × 10.00 1.60 × 1.75 × 10.00

Recon-
struction 
matrix

256 × 256 256 × 256 288 × 288

SENSE 
factor

1.5 2.0 2.5

Cardiac 
phases per 
RR interval

30 to 50 - -

TE/TR 1.71/3.4 0.91/2.0 1.24/4.0
Bandwidth 
(Hz)

1102.3 1082.0 304.9

Flip angle 60° 35° 15°
Abbreviations: late gadolinium enhancement, LGE; modified Look-Locker 
inversion recovery sequence, MOLLI; sensitivity encoding, SENSE; steady-state 
free precession, SSFP; echo time, TE; repetition time, TR
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ICC ≥ 0.75 and CV ≤ 10% were selected for further analy-
sis [29, 48].

The dataset was randomly split into training (67%) and 
testing (33%) cohorts, and the classes were balanced to 
ensure the same number of LGE + and LGE- cases. To 
further reduce the dimension, two selection algorithms 
were independently applied to the highly reproducible 
features data from the training cohort: Boruta, which 
performs a top-down search to identify relevant features 
according to their importance [49], and least absolute 
shrinkage and selection operator (LASSO) with fivefold 
cross-validation, which reduces features by penaliz-
ing the coefficients of the less important ones [50]. The 
predictors were scaled before running the Boruta selec-
tion algorithm to minimize the risk of overfitting, ensur-
ing that all features contributed equally to the model. 
Using both Boruta and LASSO as complementary algo-
rithms helped ensure that the set of features was consis-
tently identified across different approaches, enhancing 
the robustness of the feature selection process. After-
ward, hierarchical clustering was applied to all variables 
selected by Boruta and LASSO target multicollinearity 
and identify independent features, which were compared 
between the LGE subgroups.

Texture feature analysis
Multiple logistic regression models were trained with 
each independent feature to identify the features with 
better discrimination ability. 10-fold cross-validation was 
performed within each model. The Akaike Information 
Criterion (AIC) was used to select the best model. All the 
features were z-score normalized. A decision tree model 
based on the identified features was applied to determine 
a set of rules to discriminate for the presence of LGE.

Once significant features were identified, those were 
extracted for a subgroup of 15 DMD patients from the 
original cohort with at least three consecutive yearly 
examinations to assess their influence on the likelihood of 
having LGE. These were chosen to coincide with changes 
in LGE status if the patient exhibited it and to minimize 
bias. A general linear mixed-effects (GLM) model fitted 
by maximum likelihood (Laplace approximation) was 
used to study the influence of these features on the pres-
ence of LGE by calculating the log odds of LGE occur-
rence based on the identified features from the first-year 
native T1 maps.

Statistical analysis
Descriptive statistics are reported as the mean (stan-
dard deviation, SD) or median (interquartile range, IQR) 
for normally and non-normally distributed continuous 
variables, respectively, and as numbers (percentages) for 
categorical ones. The normality of the data was checked 
by the Shapiro-Wilk test and visual inspection of the 

histograms. Proportions of categorical variables were 
analyzed using the Chi-square test of independence. The 
Welch two-sample t-test and Wilcoxon rank-sum test 
were used to compare normally and non-normally dis-
tributed variables. The adjusted P-value was obtained by 
using a false discovery rate correction. A P-value < 0.05 
was considered statistically significant. The sample size 
was determined conservatively assuming Cohen’s d = 0.9, 
a large but realistic effect size in clinical studies, to 
achieve a power of 0.8 with a significance level of 0.05. 
Correlations were calculated using Pearson or Spearman 
for normally and non-normally distributed variables. The 
intraobserver and interobserver agreement was assessed 
with the ICC (type C, two-way mixed-effects model) was 
determined from fifteen randomly selected cases ana-
lyzed by two readers, one of whom repeated them one 
month apart. The repeatability was classified as poor 
(< 0.5), fair (0.50 to 0.75), good (0.75 to 0.90), and excel-
lent (0.90 to 1) [51]. The CV was determined as the stan-
dard deviation and mean ratio. The Variance Inflation 
Factor (VIF) was determined to assess the multicollinear-
ity of the final independent selected features.

Logistic regression models with 10-fold cross-valida-
tion were fitted and compared using the Akaike Infor-
mation Criterion (AIC) to estimate the probability of 
a binary outcome. Cohen’s kappa was determined to 
quantify the level of agreement between observed and 
predicted classifications. Receiver operating characteris-
tic (ROC) analyses were performed to assess the perfor-
mance of the classification models. The area under the 
curve (AUC) was reported along with 95% confidence 
intervals (CI) to quantify the uncertainty of the estimates. 
Accuracy, balanced accuracy, and F1 score were also 
determined to evaluate each model’s predictive ability.

Longitudinal data analysis was conducted to exam-
ine changes in the independent feature with the highest 
classification accuracy over time for each patient with a 
generalized linear mixed (GLM) model fitted with maxi-
mum likelihood estimation with Laplace approximation. 
The GLM assessed the influence of the feature on the 
log odds of LGE presence. The model’s fit was evaluated 
using AIC and Bayesian Information Criterion (BIC). 
All statistical analyses were performed with R-4.3.0 and 
RStudio IDE (2023.03.0 + 386, RStudio, PBC), using base 
R [52], Boruta (v8.0.0, for Boruta selection) [49], brglm 
(v0.7.2, for fitting generalized linear models with bias-
reduced estimators) [53], caret (v6.0-94, for machine 
learning algorithms and tools) [54], glmnet (v4.1-8, for 
fitting generalized linear models with elastic net regu-
larization) [55, 56], ICC (v2.4.0, for calculating intraclass 
correlation coefficients) [57], MatchIt (v4.5.5, for propen-
sity score matching) [38], and pROC (v1.18.5, for analyz-
ing ROC curves and calculating AUC) [58].
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Results
Study group
Fifteen cardiac MRI studies were used for identifying 
highly reproducible features, and 52 for the primary anal-
ysis. Forty-eight examinations had LGE assessment, the 
remaining four corresponded to examinations performed 

on DMD patients with difficult peripheral venous access. 
Patients with and without LGE (LGE + and LGE-, respec-
tively) were matched by age, and 42 remained for further 
analyses, 23 LGE + and 19 LGE-. The LGE patterns were 
intramural (12 patients), subepicardial (7 patients), and 
transmural (4 patients). The study flowchart is shown in 

Fig. 1 Study flowchart
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Fig. 1. The participant characteristics are listed in Table 2. 
Patients without LGE had significantly higher LVEF 
than those with LGE, although it was preserved in both 
groups.

Cardiac MRI T1 mapping
The cardiac MRI native T1 mapping analysis is shown 
in Table  3. The native T1 longitudinal relaxation time 
significantly differed for the anterior segment between 
DMD patients according to their LGE status. An example 

of native T1 maps and LGE images for two patients is 
shown in Fig. 2.

Texture analysis
We obtained 918 features per case, including 9 shape-
related features, 18 first order, 24  Gy-level co-occur-
rence matrix (GLCM), 14  Gy-level dependence matrix 
(GLDM), 16  Gy-level run length matrix (GLRLM), 
16 Gy-level size-zone matrix (GLSZM), and 5 neighbour-
ing gray-tone-difference matrix (NGTDM). The descrip-
tion and feature names are shown in Supplementary 
Table S1. The analysis took 11.68 ± 7.22  s per patient in 
an Intel(R) Core(TM) i7-8550U CPU @ 1.80  GHz. The 
results of all texture features were exported for further 
processing.

Texture feature selection
Of the 918 features, 62 were highly reproducible ones. 
The group of 42 patients (23 LGE + and 19 LGE-) was 
randomly split into training (15 LGE + and 12 LGE-) and 
testing (8 LGE + and 7 LGE-). After balancing the classes, 
24 patients remained in the training and 14 in the testing 
cohorts. The Boruta algorithm selected 20 features using 
the training cohort; the corresponding importance plot 
is shown in Supplementary Fig.  1. The Lasso algorithm 
selected 11 features; the relative feature importance is 
shown in Supplementary Fig.  2. Three of the identified 
features were common to both methods, as each selec-
tion method focuses on different data patterns: Boruta 
captures overall importance, while Lasso emphasizes 
individual associations with the outcome.

Afterward, five features were identified as independent 
after a hierarchical clustering algorithm was applied: two 
first-order (root mean squared (RMS)) with filter LBP 
(8,1) and entropy), two gray-level co-occurrence matrix 
(inverse difference moment normalized (IDMN) with fil-
ter wavelet LL and sum entropy with filter gradient), and 
one gray-level size-zone matrix (zone%) with filter LBP 
(8,1). Specifically, RMS is the square root of the mean of 
all the squared pixel values and measures the magnitude 
of the image, entropy quantifies the unpredictability of 
the image’s pixel values, IDMN measures the homogene-
ity of the pixel values, sum entropy quantifies the cumu-
lative variation of pixel intensities across neighbouring 
pixels, and zone% measures the roughness or coarseness 
of the texture by zones in the region of interest [46]. The 
Variance Inflation Factor (VIF) was less than 5 in all cases 
(see Supplementary Table S2).

Finally, four selected features significantly differed for 
DMD patients with and without LGE: IDMN, entropy, 
zone%, and sum entropy. Their comparison is shown in 
Table 4; Fig. 3.

Table 2 General characteristics and left and right ventricular 
function between DMD patients according to LGE
Variable LGE-, N = 19 LGE+, N = 23 p-value
Age (y) 12.6 (3.3) 13.8 (3.4) 0.256
BMI (kg/m2) 21.0 (5.2) 23.6 (6.0) 0.138
BSA (m2) 1.24 (1.04, 1.45) 1.31 (1.16, 1.63) 0.220
HR (bpm) 95 (11) 100 (15) 0.241
LVEF (%) 69 (64, 76) 58 (51, 66) 0.001
LVEDVI (ml/m2) 55.3 (41.0, 58.2) 52.6 (46.2, 62.7) 0.468
LVESVI (ml/m2) 15.2 (12.5, 20.5) 20.4 (16.2, 28.5) 0.014
LVSVI (ml/m2) 35.7 (8.3) 32.0 (7.0) 0.130
LVMI (g/m2) 36.6 (30.8, 38.4) 42.8 (35.8, 47.2) 0.015
MAPSE IVS (mm) 11.21 (1.78) 10.07 (1.51) 0.033
MAPSE FW (mm) 11.11 (1.73) 10.41 (2.10) 0.249
MAPSE (average) (mm) 11.16 (1.47) 10.24 (1.51) 0.054
RVEF (%) 67 (64, 74) 63 (52, 70) 0.065
RVEDVI (ml/m2) 53.8 (12.2) 47.5 (11.0) 0.091
RVESVI (ml/m2) 17.4 (14.2, 19.7) 17.4 (11.7, 21.4) 0.841
RVSVI (ml/m2) 34.1 (10.5) 30.0 (7.3) 0.156
TAPSE (mm) 18.0 (3.5) 17.8 (3.3) 0.823
RVWT (mm) 2.00 (2.00, 2.00) 2.00 (2.00, 2.12) 0.124
Variables are expressed as mean (standard deviation) or median (interquartile 
range) for normally distributed and non-normally distributed continuous 
variables. Abbreviations: BMI, body mass index; BSA, body surface area; DMD, 
Duchenne muscular dystrophy; LV, left ventricle; EF, ejection fraction; EDV, 
end-diastole volume; ESV, end-systole volume; FW, free wall; HR, heart rate; I, 
indexed; IVS, interventricular septum; LGE, late gadolinium enhancement; LVM, 
left ventricular mass; MAPSE, mitral annular plane systolic excursion; RV, right 
ventricle; SV, stroke volume; TAPSE, tricuspid annular plane systolic excursion; 
WT, wall thickness

Table 3 Cardiac MRI native T1 mapping for DMD patients 
according to LGE
Variable LGE-, N = 19 LGE+, N = 23 p-value
T1 native (ms)
S1 - Anterior 1016 (1006, 1035) 1053 (1019, 1068) 0.035
S2 - Anteroseptal 1020 (1004, 1041) 1027 (1016, 1052) 0.280
S3 - Inferoseptal 1022 (33) 1037 (35) 0.186
S4 - Inferior 1022 (992, 1045) 1035 (998, 1059) 0.200
S5 - Inferolateral 1032 (48) 1056 (78) 0.218
S6 - Anterolateral 1022 (41) 1042 (53) 0.195
Global 1032 (1002, 1041) 1044 (1013, 1059) 0.065
Variables are expressed as mean (standard deviation) or median (interquartile 
range) for normally and non-normally distributed continuous. Abbreviations: 
DMD, Duchenne muscular dystrophy; LGE, late gadolinium enhancement; S, 
segment
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Texture feature analysis
The logistic regression model with the IDMN feature 
achieved the highest accuracy in classifying the sam-
ples (accuracy 0.857 (0.572–0.982)) compared to the 
other significant features, as shown in Table 5. The area 
under the ROC curve (AUC) for the model with IDMN 
was 0.889 (95% CI: 0.721, 0.996), indicating good dis-
criminative ability. Additionally, when adjusting models 
with up to two features, no improvement in accuracy or 
other metrics was observed. Also, for such a small size, 
using models with more than two features compromises 

statistical reliability and overfitting, making using single 
features a more viable approach for this analysis.

A decision tree classifier was trained, and an opti-
mal threshold of 0.969 for the IDMN feature was deter-
mined for classifying the presence of LGE. Such a choice 
achieved good discriminative ability (accuracy 0.857 
(0.571, 0.982)). The AUC was 0.887 (95% CI: 0.643, 
0.995), indicating strong LGE classification performance.

Afterward, the IDMN feature was extracted for a sub-
group of 15 DMD patients with at least three consecu-
tive yearly examinations for a preliminary evaluation. A 
significant effect of IDMN on the log odds of LGE was 

Fig. 2 Representative native T1 maps and late gadolinium enhancement (LGE) images. Panels: a) native T1 map for the LGE- patient; b) LGE image for the 
LGE- patient; c) native T1 map for the LGE + patient; d) LGE image for the LGE + patient
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found (estimate: 23.35 (8.7), p-value = 0.008). The GLM 
showed a good fit to the data (AIC 33.8, BIC 42.6, and 
log-likelihood − 11.9).

Discussion
In this work, we studied the added value of texture fea-
tures extracted from native T1 mapping on LGE assess-
ment in DMD patients. Our findings suggest that one 
of four features, IDMN or inverse difference moment 
normalized, is a good option for such a purpose. In the 
study context, this feature measures the uniformity of 
the pixel intensity levels within the myocardium in native 
T1 maps [46]. It plays a crucial role in refining the spa-
tial variations in pixel values derived from T1 parametric 

mapping. Therefore, it might help to detect slight altera-
tions where regions with LGE typically exhibit distinct 
intensity patterns compared to healthy tissue, such as 
those reported in fibrosis or inflammation [5, 6], without 
using GBCA.

Texture analysis
Native T1 mapping provides valuable information about 
myocardial tissue [5, 6], and our results suggest that 
including IDMN in the assessment might offer a distinct 
advantage. It enhances the sensitivity of T1 mapping in 
identifying myocardial alterations and is a non-invasive 
approach to detect early signs of disease progression. 
Furthermore, the IDMN feature used the wavelet low-
low filter, which focuses on capturing the low-frequency 
components of the image, emphasizing the broader pat-
terns and textures present in the cardiac MRI native T1 
maps while reducing the influence of finer details and 
noise.

Texture analysis (TA) of native T1 mapping has been 
used to identify and classify hypertrophic cardiomy-
opathy [29, 32], diagnose acute myocarditis [28], study 
heart failure [34], and even characterize diffuse fibro-
sis patterns [59]. However, to our knowledge, this is the 
first study focusing on TA in DMD patients intending to 
impact the use of GBCA in their yearly clinical examina-
tions. As cardiac MRI examinations already pose a chal-
lenge for some DMD patients, limiting the time they 
spend inside the scanner and minimizing GBCA use in 
this pediatric population would be optimal for detecting 

Table 4 Comparison of texture features in DMD patients 
according to LGE
Variables Type Filter LGE-, N = 12 LGE+, 

N = 12
p-value

IDMN GLCM wavelet 
LL

0.954 (0.009) 0.972 
(0.007)

< 0.001

Entropy First 
order

- 5.07 (4.98, 
5.22)

5.28 (5.20, 
5.31)

< 0.001

Zone% GLSZM LBP(8,1) 0.65 (0.03) 0.60 (0.03) < 0.001
RMS First 

order
LBP(8,1) 5.66 (0.31) 5.72 (0.29) 0.636

Sum entropy GLCM gradient 6.53 (0.20) 6.80 (0.34) 0.025
Variables are expressed as mean (standard deviation) or median (interquartile 
range) for normally and non-normally distributed continuous. Abbreviations: 
DMD, Duchenne muscular dystrophy; GLCM, gray-level co-occurrence 
matrix; GLSZM, gray-level size-zone matrix; IDMN, inverse difference moment 
normalized; LBP, local binary pattern; LL, low-low; RMS, root mean squared

Table 5 Performance metrics for models with significant features identified by TA and global native T1
Model Accuracy (95% CI) AUC (95% CI) Balanced accuracy Kappa F1 Score AIC
IDMN 0.857 (0.572, 0.982) 0.889 (0.721, 0.996) 0.857 0.714 0.875 18.6
Entropy 0.786 (0.492, 0.953) 0.792 (0.583, 0.995) 0.786 0.571 0.800 22.6
Zone% 0.643 (0.351, 0.872) 0.675 (0.425, 0.896) 0.643 0.286 0.706 26.6
Sum entropy 0.643 (0.351, 0.872) 0.646 (0.396, 0.871) 0.643 0.286 0.667 31.6
Native T1 global 0.571 (0.289, 0.823) 0.578 (0.313, 0.830) 0.571 0.143 0.625 34.3
Variables are expressed as mean (standard deviation) or median (interquartile range) for normally and non-normally distributed continuous. Abbreviations: CI, 
confidence interval; IDMN, inverse difference moment normalized

Fig. 3 Distribution of selected feature values for DMD patients with and without LGE. Abbreviations: IDMN, inverse difference moment normalized; LBP, 
local binary pattern; LL, low-low; RMS, root mean squared
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early myocardial involvement [3, 12, 20]. Moreover, TA 
has potential value for patients where administering 
contrast agents is not feasible, such as in cases with dif-
ficult venous access or identification, patient discomfort, 
anatomical positions that hinder catheter insertion, and 
potential vascular fragility or compromised circulation 
associated with DMD.

Native T1 parametric mapping
It has been shown that DMD patients have higher native 
T1 relaxation times than healthy subjects, regardless of 
myocardial fibrosis assessed by LGE [43, 60–62]. How-
ever, there are contradictory reports regarding identify-
ing LGE status from native T1 maps when comparing 
DMD patients with and without LGE [43, 60, 61, 63, 
64]. Studies found similar values in the segmental and 
global native T1 relaxation times [43], higher values for 
LGE + DMD patients limited to the lateral wall [60, 61] 
or the global assessment [60, 63], and even lower val-
ues for LGE + DMD patients compared to those without 
LGE [64]. We also found higher but not significant global 
native T1 relaxation times between patients with and 
without LGE. LVEF was preserved in all DMD, regardless 
of LGE status, as shown in other studies [65].

These contradictory results regarding native T1 relax-
ation times might benefit from adding an extra layer of 
detail, considering also that a previous study showed 
that, by itself, native T1 parametric mapping is not a 
strong predictor of LGE in DMD [18]. From our findings, 
IDMN leverages the information in T1 parametric map-
ping, refining the spatial variations in the pixel values and 
identifying subtle alterations in tissue texture. As a result, 
it might complement the utility of native T1 mapping in 
identifying potential LGE in DMD patients without using 
GBCA. Furthermore, we found a significant effect on the 
logs of LGE by a preliminary assessment of this feature 
over time, suggesting that IDMN has a strong potential 
to help predict LGE progression in DMD patients, and 
monitoring this feature could also help reduce the fre-
quency of GBCA use in their cardiac MRI examinations.

Finally, the clinical relevance of our study lies in the 
potential of TA to complement native T1 parametric 
mapping in DMD patients, considering the challenges 
they might experience during cardiac MRI examinations 
[20]. Even though only four of our participants had dif-
ficult peripheral venous access, this issue is commonly 
encountered in clinical practice [22]. Together with the 
lower proportion of DMD sufferers who might poten-
tially have renal involvement [19, 21], it reinforces the 
need for alternative techniques. TA could initially be 
part of research assessments and, after further valida-
tion and automation, be incorporated gradually into 
existing routine clinical workflows [37]. Developing a 
pipeline adapted to specific clinical needs could provide 

clinicians with two main benefits: the ability to exploit 
native CMR examinations for particular patient sub-
groups when required and the flexibility to extend tex-
ture analysis models by integrating relevant clinical data, 
potentially enabling more advanced applications such 
as risk stratification tools to improve prognosis in DMD 
patients. Building on this approach, enhancing non-con-
trast imaging has the potential to optimize cardiac MRI 
examinations for DMD patients, improving their disease 
monitoring while minimizing GBCA use.

Limitations
Our study has limitations. It was retrospectively per-
formed in a single center, so our sample size was small. 
Additionally, our results were not externally validated, 
limiting their clinical applicability and generalizability. 
Nonetheless, the TA approach followed in this study can 
be extended to other pathologies beyond DMD. Even 
though more types of texture analysis exist in the litera-
ture, our study is based on one that has been consistently 
applied in cardiac MRI. Likewise, although we minimized 
patient selection bias, we could not rule it out completely, 
and we worked with artifact-free images. Even though 
they might not always represent the clinical practice, it 
is necessary to ensure the utility of texture features, as 
artifacts can significantly impact their assessment and 
compromise their reliability. Finally, even though there 
are conventional and widely studied clinical markers that 
predict LGE, we wanted to contribute to understanding 
how specific features can independently provide insight 
into LGE in DMD patients to advance knowledge in car-
diac imaging. Future research will benefit from collabora-
tive efforts to study the utility of IDMN assessment in 
DMD patients, establish a direct correlation between T1 
mapping-derived TA features and their long-term clinical 
outcomes, and analyze the feasibility of reducing the fre-
quency of GBCA use during their regular controls.

Conclusion
We successfully implemented a pipeline for extracting 
texture features from cardiac MRI native T1 mapping and 
studied their potential in assessing LGE in DMD patients. 
Our findings showed that IDMN, a feature that measures 
the homogeneity of pixel values in a region, might aid in 
detecting slight myocardial tissue alterations associated 
with LGE, which is crucial for monitoring the cardiovas-
cular health in these patients. Furthermore, IDMN might 
leverage the information native T1 parametric mapping 
provides, helping to reduce the use of GBCA in these 
patients’ yearly cardiac MRI examinations and aiding 
those with difficult venous access.
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