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Abstract
Background  This study aimed to describe overall survival (OS) of patients with APDS relative to the global 
population as well as among subsets of patients with concurrent lymphoma or hematopoietic stem cell transplant 
(HSCT) relative to the overall APDS population.

Methods  Patient-level data were extracted from a recent systematic literature review of 351 unique patients with 
APDS. OS was evaluated using the Kaplan-Meier method up to age 65 years. OS rate and corresponding 95% CI were 
reported at each decade of age. Global mortality estimates were obtained from World Health Organization life tables 
for 2019.

Results  Of the 351 patients with APDS (APDS1, 267 [76.1%]; APDS2, 83 [23.6%]; unspecified, 1 [0.3%]), 41 (11.7%) died. 
The OS rate was 25.0% (95% CI, 1.6–62.7%) by the last death event at 64 years of age. Starting at 12 years of age, the 
OS rate was numerically lower in patients with APDS relative to the global population (median OS, 64 vs. 75 years, 
respectively). Relative to the overall APDS population, OS rates were numerically similar in those who underwent 
HSCT (median OS, 64 years for both; p = 0.569), whereas OS rates were numerically lower in patients with concurrent 
lymphoma (median OS, 41 vs. 64 years, respectively; p = 0.109). Publication bias in source data was a possible 
limitation.

Conclusion  Reduced survival in patients with APDS suggests a high disease burden, particularly in those with 
concurrent lymphoma. These results highlight the unmet need for disease-modifying treatments for APDS.
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Introduction
Activated phosphoinositide 3-kinase delta (PI3Kδ) syn-
drome (APDS)—also known as p110 delta–activating 
variant causing senescent T cells, lymphadenopathy, and 
immunodeficiency (PASLI)—is an underrecognized, rare 
primary immunodeficiency (PID) that was first char-
acterized in 2013 [1–3]. As an inborn error of immu-
nity, APDS is caused by variants in one of two genes 
that encode subunits of PI3Kδ [3–5]. Gain-of-function 
mutations in the phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit delta (PIK3CD) gene encoding 
the p110δ catalytic subunit of PI3Kδ lead to APDS1, and 
loss-of-function mutations in the phosphoinositide-3-ki-
nase regulatory subunit 1 (PIK3R1) gene encoding the 
p85α regulatory subunit of PI3Kδ lead to APDS2 [1, 2, 4–
9]. These genetic mutations result in overactivation of the 
PI3K/AKT/mTOR/S6K signaling pathway, which alters 
B-cell and T-cell growth, survival, proliferation, and dif-
ferentiation, ultimately leading to immune deficiency and 
dysregulation [4–6, 9, 10].

Patients diagnosed with APDS exhibit a diverse range 
of symptoms that typically present in infancy or early 
childhood, with APDS1 and APDS2 often displaying 
similar clinical features [4, 11, 12]. Recurrent respiratory 
tract infections are nearly ubiquitous among patients 
with APDS and may be accompanied by other manifes-
tations such as bronchiectasis, persistent herpesvirus 
infections, various viral and bacterial infections, non-
neoplastic lymphoproliferation involving lymphade-
nopathy, splenomegaly and hepatomegaly, autoimmune 
and autoinflammatory conditions, neurodevelopmental 
issues, and growth deficiencies [4, 11, 12]. Additionally, 
concurrent lymphoma has been reported in up to 25% of 
patients with APDS [11–13]. Although some adults with 
APDS may be asymptomatic, many patients experience 
considerable morbidity, and infection-related fatalities 
have been documented in children and young adults with 
APDS [11].

Manifestations associated with APDS are variable and 
may be progressive and detrimental over time [4]. There 
are currently no treatment guidelines defining standard 
of care. Therapies for APDS can vary according to clinical 
manifestations and may include antimicrobial prophy-
laxis, mTOR inhibitors, immunomodulatory therapies, 
immunoglobulin replacement therapy, and splenectomy 
[4]. Notably, none of these treatment strategies target 
the underlying pathogenesis of APDS. Hematopoietic 
stem cell transplant (HSCT) has been used to treat APDS 
when severe immune deficiency is present. However, 
the risks of adverse events and mortality limit the clini-
cal application of HSCT [4, 14–16]. In 2023, leniolisib, an 
oral selective PI3Kδ inhibitor, became the first and only 
treatment approved in the US for APDS after meeting 
both coprimary outcomes of reduction in index lymph 

node size and increase in the percentage of naïve to total 
B cells in the peripheral blood (p < 0.001 for both).

As APDS was only characterized within the last 
decade, there is a paucity of published literature on the 
clinical course of the disease, including the survival pat-
tern of patients with APDS [5, 6]. Small cohort studies 
of APDS1 and APDS2 have reported 30-year overall sur-
vival rates of 86% and < 75%, respectively [12, 16], while 
a larger systematic literature review of 256 patients with 
APDS reported a 30-year overall survival rate of 74% 
[17]. However, these analyses did not contextualize the 
overall survival of patients with APDS relative to the gen-
eral population or account for the impact of therapies.

To shed light on these gaps in the literature, this study 
estimated the overall survival of patients with APDS rela-
tive to the global population using patient-level data from 
a systematic literature review. Additional objectives were 
to describe overall survival by APDS subtype, in patients 
with concurrent lymphoma, and censoring for patients 
who were treated with HSCT.

Methods
Patient-level data were extracted via a systematic litera-
ture review that has been previously detailed [18]. Briefly, 
the systematic literature review followed the PICO (pop-
ulation, intervention, comparator, and outcome) prin-
ciple (Table  1) [19]. A comprehensive literature search 
in PubMed and Embase databases was conducted from 
the time of each database’s inception to March 13, 2023, 
to identify relevant publications that included data on 
patients with APDS and their survival status [19, 20]. 
To be included in the study population, patients were 
required to have a reported APDS diagnosis or a first-
degree relative with genetically confirmed APDS and 
at least 1 reported clinical sign consistent with APDS. 
When available, data on age at last observation, death, 
age at death, sex, APDS subtype (APDS1 or APDS2), 
concurrent lymphoma, HSCT, age at HSCT, and age at 
leniolisib initiation were extracted from the literature 
within the systematic literature review [1, 2, 7, 8, 11, 12, 
15, 16, 21–120].

Global mortality estimates were obtained from the 
World Health Organization (WHO) life tables for 2019 
and were used to estimate overall survival for the global 
population [121].

Statistical analysis
Overall survival was evaluated using the Kaplan-Meier 
method and defined as the time from birth to the age 
of death due to any cause. The overall survival rate and 
corresponding 95% CIs were estimated up to 65 years of 
age, as the maximum age of death reported in the indi-
vidual patient data was 64 years. Median overall survival 
was defined as the age when the overall survival rate of 
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patients with APDS was 50%. To ensure that the overall 
survival rate in patients with APDS accounted for thera-
pies used as supportive care, patients treated with leni-
olisib were censored at the age of leniolisib initiation. In 
the analysis that censored for HSCT, patients who under-
went HSCT were censored at the age of transplant.

The overall survival rate of the global population was 
derived using the probability of dying (qx) at specific age 
intervals. Overall survival rates of the global population 
were calculated using the following formula:

	 St =
(
1 − qx(t)

)
× St−1

Where St represents the overall survival rate at age inter-
val t, qx(t) represents the probability of dying at time t, 
and St–1 represents the overall survival rate at the prior 
age interval. The overall survival rate at 0 years of age was 
imputed as 1.

Overall survival rates between groups of patients were 
compared using a log-rank test to determine whether 
differences in survival were statistically significant. 
Comparisons were made between the following groups: 
(1) patients with APDS1 versus APDS2 (2) patients 
with APDS with concurrent lymphoma versus without 

concurrent lymphoma, and (3) patients with APDS who 
received HSCT versus those who did not receive HSCT.

All analyses were conducted using SAS Enterprise 
Guide software Version 7.15 (SAS Institute, Cary, NC).

Results
Patient characteristics
Among 108 eligible publications from the systematic lit-
erature review (Fig.  1), 351 unique patients with APDS 
were identified: 267 patients (76.1%) with APDS1 and 
83 patients (23.6%) with APDS2 (Table  2) [18]. One 
patient (0.3%) did not have a specified APDS subtype 
and was excluded from the stratified analyses. Overall, 
171 patients (49%) were male, 135 (38%) were female, 
and 45 (13%) did not have sex reported. Lymphoma was 
reported in 43 patients (12.3%) with APDS. A total of 46 
patients (13.1%) were reported to have undergone HSCT, 
of whom 6 patients were excluded from the censor-
ing analysis, as the age at the time of the procedure was 
not reported. Leniolisib use was reported for 13 patients 
(3.7%), none of whom were treated with HSCT.

Overall survival
Of the 351 patients with APDS, 41 (11.7%) died, and the 
median overall survival was 64 years (Fig.  2). The esti-
mated overall survival rate reached 25.0% (95% CI, 1.6–
62.7%) by the last death event at 64 years of age. Starting 
from 12 years of age, the estimated overall survival of 
patients with APDS was numerically lower relative to the 
global population, with the estimated overall survival rate 
being 17.0% and 21.2% lower at 30 and 40 years of age, 
respectively. The median overall survival in the global 
population was 75 years.

Among the 267 patients with APDS1, 31 (11.6%) died, 
and median overall survival was 64 years (Fig.  3A). The 
estimated overall survival rate among patients with 
APDS1 reached 27.1% (95% CI, 1.6–66.2%) by the last 
death event at 64 years of age. Starting from 11 years of 
age, the estimated overall survival of patients with APDS1 
was numerically lower relative to the global population. 
At 30 and 40 years of age, the estimated overall survival 
rate was 15.0% and 18.9% lower, respectively, relative to 
the global population.

Among the 83 patients with APDS2, 10 (12.0%) died, 
and median overall survival was not reached (Fig.  3B). 
The estimated overall survival rate among patients with 
APDS2 reached 55.6% (95% CI, 28.6–75.9%) by the last 
death event at 41 years of age. Starting at nearly 15 years 
of age, the estimated overall survival of patients with 
APDS2 was numerically lower relative to the global pop-
ulation. At 30 and 40 years of age, the estimated overall 
survival rate was 21.4% and 26.3% lower, respectively, 
relative to the global population. There was no significant 

Table 1  PICO criteria
Category Inclusion criteria Exclusion criteria
Population • Patients with APDS OR patients 

with ≥ 1 clinical sign consistent 
with the clinical spectrum 
of APDSaAND a first-degree 
relative who has a genetically 
confirmed diagnosis of APDS

• Studies not re-
porting individual 
patient data for 
outcome of 
interest

Interventions or 
comparators

• Any • Not applicable

Outcomes • Age at last observation
• Alive status
• Age at death

• No reported out-
come of interest

Publication type • Articles, letters, clinical com-
munications, and case series

• Any other 
publications

Language • English language
• Study publication date: 2013b 
to March 2023

• Studies 
published in 
languages other 
than English or 
prior to 2013b

aClinical signs included documented severe recurrent sinopulmonary infections 
(> 2 events within 3 years of each other); bronchiectasis; lymphadenopathy for 
greater than 1 month; any nodular lymphoid hyperplasia; chronic hepatomegaly 
or chronic splenomegaly; severe, persistent, or recurrent Herpesviridae 
infections (e.g., Epstein-Barr virus, cytomegalovirus); autoimmune cytopenia; 
enteropathy; lymphoma; hypogammaglobulinemia; elevated levels of 
immunoglobulin M; reduced number of CD3+CD4+ T cells; increased number 
of follicular helper T cells; reduced number of naïve T cells; clinical diagnosis 
of CVID or a primary immunodeficiency; evidence of PI3K pathway activation; 
and additional clinical features within the clinical spectrum of APDS, with 
a consensus. bStudies included were published in 2013 or later, as APDS was 
characterized in 2013. APDS, activated phosphoinositide 3-kinase delta 
syndrome; CVID, common variable immunodeficiency; PI3K, phosphoinositide 
3-kinase; PICO, population, intervention, comparison, and outcome
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difference in overall survival between patients with 
APDS1 and patients with APDS2 (p = 0.899) (Fig. 3C).

In the 43 patients with APDS and reported concur-
rent lymphoma, 13 (30.2%) died and the median overall 
survival was 41 years (Fig.  4A). Relative to the overall 

population of patients with APDS, the estimated over-
all survival of patients with APDS and concurrent lym-
phoma was numerically lower across nearly all ages. 
The estimated overall survival rate among patients with 
APDS and concurrent lymphoma reached 42.7% (95% 
CI, 17.9–65.7%) by the last death event at 41 years of age, 
relative to the estimated overall survival rate of 66.8% 
(95% CI, 53.7–76.9%) in the overall population of patients 
with APDS at the same age. Overall survival was further 
compared between the 43 patients with concurrent lym-
phoma and the 308 patients without concurrent lym-
phoma (Fig.  4B). Although the overall survival rate was 
observed to be up to 23.5% lower in patients with APDS 
and concurrent lymphoma compared with those without 
lymphoma, the difference between these two groups was 
not significant (p = 0.109).

Of 40 patients reported to have undergone HSCT and 
for whom an age at transplant was available, 5 (12.5%) 
died. The mean follow-up time between transplant and 
last reported age was 3.7 years (SD, 4.5; range, 0–16), 
with 16 (40%) and 9 (22.5%) patients having at least 3 and 
5 years of follow-up after transplant, respectively. The 
overall survival of patients with APDS was largely con-
sistent across ages after censoring for HSCT (Fig.  5A). 
The median overall survival of patients with APDS cen-
sored for HSCT was 64 years, consistent with the overall 

Table 2  Patient characteristicsa

Characteristic Patients (N = 351)
Sex, No. (%)
  Male 171 (49)
  Female 135 (38)
  Not reported 45 (13)
APDS type, No. (%)
  APDS1 (PIK3CD) 267 (76.1)
  APDS2 (PIK3R1) 83 (23.6)
  Not reported 1 (0.3)
Age at last follow-up
  Alive
      No. of patients with available data 310
      Mean (range), y 17.1 (0.5–67)
  Deceased
      No. of patients with available data 41
      Mean (range), y 19.6 (1–64)
aBecause of rounding, percentages may not total 100%. APDS, activated 
phosphoinositide 3-kinase delta syndrome; PIK3CD, phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit delta; PIK3R1, phosphoinositide-3-
kinase regulatory subunit 1

Fig. 1  PRISMA flow diagram providing the review process. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses
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APDS population. Beginning at approximately 4 years of 
age, estimated overall survival when censoring for HSCT 
was numerically higher than the overall survival when 
not censoring for HSCT, with the largest difference in 
the estimated overall survival rate observed at 15 years of 
age (censored for HSCT, 92.3% [95% CI, 88.0–95.2%]; not 
censored for HSCT, 91.3% [95% CI, 86.8–94.3%]). Over-
all survival was also evaluated between the 46 patients 
with APDS who had undergone HSCT and those who 
had not (n = 305) (Fig.  5B). Although median overall 
survival among patients with APDS who had not under-
gone HSCT was 57 years and was not reached in those 
who had undergone HSCT, no significant difference was 
observed between these two groups (p = 0.569).

Discussion
Using individual data from 351 patients with APDS 
obtained via a systematic literature review, this study 
estimated a lower overall survival rate among the over-
all APDS population relative to the global population and 
across APDS subtype. Early mortality in patients with 
APDS was evidenced by a median overall survival of 64 

years, an 11-year difference compared with 75 years in 
the global population. In addition, overall survival rates 
for patients with APDS were up to 28% lower than that 
of the global population, underscoring the significant 
morbidity of APDS that can lead to shorter lifespans. The 
estimated 30-year overall survival rate observed in this 
study (76.4%) aligns with a previous report of the 30-year 
overall survival rate in 256 patients with APDS (74%), 
among whom no significant difference in overall sur-
vival between APDS1 and APDS2 was also observed [17]. 
To our knowledge, our study provides the most current 
and comprehensive estimate of overall survival among 
patients with APDS [12, 16, 17].

In this study, a divergence in survival between patients 
with APDS and the global population was observed 
beginning in adolescence and sustained through adult-
hood. Nearly all patients with APDS (98%) experience 
their first symptoms of APDS in infancy or childhood 
at a median age of 2.0 years (range, birth to 22 years). In 
contrast, the median age of diagnosis is 13.4 years (range, 
0–56 years) [18]. Delays in APDS diagnosis of a median 
7.0 years (IQR, 3.4–14.0 years) and mean 10.6 years 

Fig. 2  Kaplan-Meier curve of overall survival in patients with APDS and the global population. APDS, activated phosphoinositide 3-kinase delta syndrome
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Fig. 3  Kaplan-Meier curve of overall survival in patients with (A) APDS1 or (B) APDS2 and the global population, or (C) APDS1 versus APDS2. APDS, acti-
vated phosphoinositide 3-kinase delta syndrome
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Fig. 4  Kaplan-Meier curve of overall survival in (A) patients with APDS and APDS with concurrent lymphoma or (B) patients with APDS with concurrent 
lymphoma versus without concurrent lymphoma. APDS, activated phosphoinositide 3-kinase delta syndrome
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Fig. 5  Kaplan-Meier curve of overall survival in (A) patients with APDS and censoring at age of HSCT or (B) patients with APDS with HSCT versus without 
HSCT. APDS, activated phosphoinositide 3-kinase delta syndrome; HSCT, hematopoietic stem cell transplant
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(range, 0–44 years) have been previously reported [18, 
122]. The mortality implications of early onset of APDS 
manifestations coupled with delays in diagnosis and lack 
of effective early interventions are not fully understood. 
However, findings from our study suggest that timely 
diagnosis and effective management of APDS at first 
presentation of symptoms may improve survival in these 
patients but should be confirmed in future analyses of OS 
relative to the diagnostic timing.

Our findings also highlight the exacerbated mortality 
of patients with APDS and concurrent lymphoma, with 
a median overall survival of 41 years. The cumulative risk 
of lymphoid malignancy has been previously estimated 
to be as high as 78% at 40 years of age, and up to 62% 
of APDS fatalities may be attributable to lymphoma [12, 
123]. In this study, the overall survival rate in patients 
with APDS and concurrent lymphoma was 42.7% at 41 
years of age, compared with 66.8% in the overall APDS 
population at the same age. Although we did not observe 
a significant difference in overall survival between 
patients with APDS with and without concurrent lym-
phoma, an empirical assessment of the data suggests an 
accelerated decline in survival among patients with APDS 
and concurrent lymphoma relative to those without con-
current lymphoma and to the overall APDS population. 
Thus, our findings underscore the considerable influence 
of concurrent lymphoma on overall survival and empha-
size the importance of focusing mitigation efforts on 
decreasing the incidence of lymphoma in patients with 
APDS.

Previous literature suggests that HSCT can reverse 
some phenotypes of APDS or achieve a cure; the reported 
overall survival rates after HSCT were 81% over follow-
up periods ranging from 8 months to 16 years and 86% at 
2 years [14, 15]. However, prior studies have also reported 
high rates of complications following HSCT, including 
graft instability or failure and severe infection [14–16]. In 
this study, we observed that the estimated overall survival 
of patients with APDS remained largely unchanged when 
censoring for HSCT. Moreover, no significant difference 
was noted when overall survival in patients with APDS 
who were reported to have undergone HSCT was com-
pared with overall survival in those who had not. With 
the data available at the time of this analysis, our results 
suggest that HSCT may not provide a meaningful clini-
cal benefit in survival in patients with APDS and ongo-
ing evaluation is warranted. Further investigations are 
warranted to assess whether the benefits observed with 
HSCT outweigh the risk of adverse complications includ-
ing graft failure or instability, poor graft function, graft 
vs. host disease, and mortality [14–17, 122].

The results of this study should be considered within 
the context of its limitations. First, this study relied on 
published data, potentially introducing publication bias. 

However, this study includes a large collection of publi-
cations describing patients with APDS across multiple 
countries to help mitigate bias. Secondly, age-related 
information in the literature predominantly focuses on 
early decades of life, resulting in fewer data available 
for the construction of Kaplan-Meier curves for later 
decades. Given the recent characterization of APDS in 
2013 and a median age of diagnosis of 12 years, the distri-
bution of age among patients with APDS observed in our 
study may be reflective of real-world trends [1, 2, 122]. 
Additionally, the follow-up time after HSCT was based 
on follow-up times noted in the literature. Therefore, the 
time between age at HSCT and last age observed may 
not have been sufficient to capture the long-term survival 
benefit associated with transplant. Likewise, literature 
references reported that only 13 patients received leni-
olisib, which precluded the assessment of the impact of 
leniolisib on overall survival. With the approval of leni-
olisib for treatment of APDS in 2023 by the US Food 
and Drug Administration, future studies may extend the 
present findings by evaluating its impact on mortality. 
Additionally, the creation of an International Classifica-
tion of Diseases, Tenth Revision, Clinical Modification 
(ICD-10-CM) code for APDS (D81.82) in 2023 may also 
help identify patients for future analyses. Finally, due 
to lack of individual data for the global population, CIs 
for survival estimates could not be calculated in this 
population, and a statistical comparison of overall sur-
vival between the overall APDS population and global 
population was not feasible. Despite these limitations, 
our assessment of APDS mortality relative to the global 
population sheds light on the considerable burden of this 
disease. Moreover, our study assesses the largest number 
of patients with APDS for whom survival has been evalu-
ated, increasing the generalizability of our findings to the 
broader APDS population, and it is the first study to eval-
uate the impact of concurrent lymphoma and HSCT on 
survival.

Conclusions
This study provides the most current and comprehensive 
estimate of overall survival in patients with APDS. Rela-
tive to the global population, the overall survival rate was 
lower among the overall APDS population and across 
APDS subtype, with no difference in mortality between 
APDS1 and APDS2. The observed lack of improvement 
in survival after HSCT warrants further investigation 
of the impact of this therapy in patients with APDS. 
Findings from this study indicate a high disease bur-
den associated with APDS, particularly in patients with 
concurrent lymphoma, highlighting the unmet need for 
disease-modifying treatments to improve survival in this 
patient population.
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